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ABSTRACT

I report on close encounters of stars to the Sun found in the first Gaia data release (GDR1). Combining Gaia astrometry with radial
velocities of around 320 000 stars drawn from various catalogues, I integrate orbits in a Galactic potential to identify those stars which
come within a few parsecs. Such encounters could influence the solar system, for example through gravitational perturbations of the
Oort cloud. 16 stars are found to come within 2 pc (although a few of these have dubious data). This is fewer than were found in a
similar study based on Hipparcos data, even though the present study has many more candidates. This is partly because I reject stars
with large radial velocity uncertainties (>10 km s−1), and partly because of missing stars in GDR1 (especially at the bright end). The
closest encounter found is Gl 710, a K dwarf long-known to come close to the Sun in about 1.3 Myr. The Gaia astrometry predict
a much closer passage than pre-Gaia estimates, however: just 16 000 AU (90% confidence interval: 10 000–21 000 AU), which will
bring this star well within the Oort cloud. Using a simple model for the spatial, velocity, and luminosity distributions of stars, together
with an approximation of the observational selection function, I model the incompleteness of this Gaia-based search as a function
of the time and distance of closest approach. Applying this to a subset of the observed encounters (excluding duplicates and stars
with implausibly large velocities), I estimate the rate of stellar encounters within 5 pc averaged over the past and future 5 Myr to be
545±59 Myr−1. Assuming a quadratic scaling of the rate within some encounter distance (which my model predicts), this corresponds
to 87 ± 9 Myr−1 within 2 pc. A more accurate analysis and assessment will be possible with future Gaia data releases.
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1. Introduction

What influence has the Galactic environment had on the solar
system? How has this environment changed with time? As the
solar system moves through the Galaxy, it is likely to come close
to other stars. Ionizing radiation from particularly hot or active
stars could adversely affect life on Earth. Tidal forces could shear
the Oort cloud, the postulated body of primordial comets orbit-
ing in the cold, dark outskirts of the solar system. This could
push some bodies into the inner solar system in the form of
comet showers, where they could potentially impact the Earth.

Reconstructing the encounter history (and future) of the solar
system is possible by observing the present day positions and ve-
locities of stars, and tracing their paths back and forward in time.
Such studies came into their own after 1997 with the publica-
tion of the Hipparcos catalogue, which lists the positions, proper
motions, and parallaxes of some 120 000 stars. The various stud-
ies performed before and since Hipparcos have identified tens
of stars which have – or which will – come within 2 pc of the
Sun (Matthews 1994; Mülläri & Orlov 1996; García-Sánchez
et al. 1999, 2001; Dybczyński 2006; Bobylev 2010a,b; Jiménez-
Torres et al. 2011; Bailer-Jones 2015a; Dybczyński & Berski
2015; Mamajek et al. 2015; Berski & Dybczyński 2016). One
of these articles, Bailer-Jones (2015a) (hereafter paper 1), is the
precursor to the present work, and was based on the Hipparcos-
2 catalogue (van Leeuwen 2007) combined with various radial
velocity catalogues. Dybczyński & Berski (2015) looked more
closely at some of the encounters discovered in paper 1, in par-
ticular those flagged as problematic.

The closer a stellar encounter, the larger the tidal force on
the Oort cloud. But the ability to perturb the orbit of a comet
depends also on the mass and relative speed of the encounter.
This can be quantified using an impulse approximation (Öpik
1932; Oort 1950; Rickman 1976; Dybczynski 1994). One ver-
sion of this (Rickman 1976) says the change in velocity of an
Oort cloud comet due to a star of mass M passing a distance dph
at speed vph is proportional to

M
vph d2

ph

. (1)

For the much rarer, very close approaches (on the order of the
comet–Sun separation), the dependence on distance is more like
1/dph (see Feng & Bailer-Jones (2015) for some empirical com-
parison). More sophisticated modelling of the effect of pass-
ing stars on the Oort cloud has been carried out by, for exam-
ple, Scholl et al. (1982); Weissman (1996); Dybczyński (2002);
Fouchard et al. (2011); Rickman et al. (2012). Feng & Bailer-
Jones (2015) looked specifically at the consequence of the clos-
est encounters found in paper 1.

Our ability to find and characterize close encounters has re-
ceived a huge boost by the launch of the Gaia astrometric satel-
lite in December 2013 (Gaia Collaboration et al. 2016b). This
deep, accurate astrometric survey will eventually provide posi-
tions, parallaxes, and proper motions for around a billion stars,
and radial velocities for tens of millions of them. The first Gaia
data release (GDR1) in September 2016 (Gaia Collaboration
et al. 2016a), although based on a short segment of data and with
only preliminary calibrations, included astrometry for two mil-
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lion Tycho sources (Høg et al. 2000) down to about 13th magni-
tude, with parallaxes and proper motions a few times more accu-
rate than Hipparcos (Lindegren et al. 2016). This part of GDR1
is known as the Tycho-Gaia Astrometric Solution (TGAS), as it
used the Tycho coordinates from epoch J1991.25 to lift the de-
generacy between parallax and proper motion which otherwise
would have occurred when using a short segment of Gaia data.

The first goal of this paper is to find encounters from combin-
ing TGAS with various radial velocity catalogues. The method,
summarized in section 2 is very similar to that described in pa-
per 1. One important difference here is the exclusion of stars with
large radial velocity uncertainties. I search for encounters out
to 10 pc, but really we are only interested in encounters which
come within about 2 pc. More distant encounters would have to
be very massive and slow to significantly perturb the Oort cloud.
The encounters are presented and discussed in section 3.

The other goal of this paper is to model the completeness in
the perihelion time and distance of searches for close encounters.
This involves modelling the spatial, kinematic, and luminosity
distribution of stars in the Galaxy, and combining these with the
survey selection function to construct a two-dimensional com-
pleteness function. A simple model is introduced and its conse-
quences explored in section 4. Using this model I convert the
number of encounters detected into a prediction of the intrin-
sic encounter rate out to some perihelion distance. This study is
a precursor to developing a more sophisticated incompleteness-
correction for subsequent Gaia data releases, for which the se-
lection function should be better defined.

The symbols tph, dph, and vph indicate the perihelion time,
distance, and speed respectively (“ph” stands for perihelion).
The superscript “lin” added to these refers to the quantity as
found by the linear motion approximation of the nominal data
(where “nominal data” means the catalogue values, rather than
resamplings thereof). The superscript “med” indicates the me-
dian of the distribution over a perihelion parameter found by or-
bit integration (explained later). Preliminary results of this work
were reported at the Nice IAU symposium in April 2017 (Bailer-
Jones 2017).

2. Procedure for finding close encounters

The method is similar to that described in paper 1, but differs in
part because the radial velocity (RV) catalogue was prepared in
advance of the Gaia data release.

1. I searched CDS/Vizier in early 2016 for RV catalogues
which had a magnitude overlap with Tycho-2 and a typical
radial velocity precision, σ(vr), better than a few km s−1. I
ignored catalogues of stellar cluster members, those obso-
leted by later catalogues, or those with fewer than 200 en-
tries. Where necessary, I cross-matched them with Tycho-2
using the CDS X-match service to assign Tycho-2 IDs (or
Hipparcos IDs for those few Hipparcos stars which do not
have Tycho-2 IDs). The union of all these catalogues I call
RVcat. A given star may appear in more than one RV cata-
logue or more than once in a given catalogue, so RVcat con-
tains duplicate stars. Each unique entry in RVcat I refer to as
an object. RVcat contains 412 742 objects.
Missing σ(vr) values were replaced with the median of all
the other values of σ(vr) in that catalogue. Malaroda2012
lists no uncertainties, so I somewhat arbitrarily set them to
0.5 km s−1. For APOGEE2 I look the larger of its catalogue
entries RVscatter and RVerrMed and added 0.2 km s−1 in
quadrature, following the advice of Friedrich Anders (private

communication). For Galah I conservatively use 0.6 km s−1,
following the statement in Martell et al. (2017) that 98% of
all stars have a smaller standard deviation than this.

2. I then independently queried the Gaia-TGAS archive to find
all stars which, assuming them all to have radial veloci-
ties of |vr | = 750 km s−1, would come within 10 pc of the
Sun according to the linear motion approximation (LMA)
(dlin

ph < 10 pc). The LMA models stars as moving on unaccel-
erated paths relative to the Sun, so has a quick analytic so-
lution (see paper 1). By using a fixed radial velocity I could
run the archive query (listed in appendix A) independently
of any RV catalogue, and by using the largest plausible ra-
dial velocity I obtained the most-inclusive list of encounters
(the larger the radial velocity, the closer the approach). The
value of 750 km s−1 is chosen on the basis that the escape
velocity from the Galaxy (with the model adopted for the
orbit integrations) is 621 km s−1 at the Galactic Centre (GC)
and 406 km s−1 at the solar circle; a reasonable upper limit
is 500 km s−1. To this I add the velocity of the Sun relative
to the GC (241 km s−1) to set a limit of 750 km s−1, on the
assumption that very few stars are really escaping from the
Galaxy. This query (run on 16-11-2016) identified 541 189
stars. Stars with non-positive parallaxes are removed, leav-
ing 540 883 stars (call this ASTcat).

3. I now remove from RVcat all objects which have |vr | >
750 km s−1 or σ(vr) > 10 km s−1 or which have one of
these values missing. This reduces RVcat to 397 788 objects,
which corresponds to 322 462 unique stars. This is approx-
imately the number of objects/stars I can test for being en-
counters.1 The number of objects for each of the catalogues
is shown in column 3 of Table 1.

4. The common objects between this reduced RVcat and
ASTcat are identified (using the Tycho/Hipparcos IDs).
These 98 849 objects all have – by construction – a Ty-
cho/Hipparcos ID, TGAS data, positive parallaxes, |vr | ≤

750 km s−1, σ(vr) ≤ 10 km s−1, and would encounter the Sun
within 10 pc (using the LMA) if they had a radial velocity
of 750 km s−1. Applying the LMA now with the measured
radial velocity, I find that 725 have dlin

ph < 10 pc. The num-
ber per RV catalogue is shown in the fourth column of Table
1. Only these objects will be considered in the rest of this
paper. The distribution of the measurements, including their
standard deviations and correlations, can be found in Bailer-
Jones (2017).

5. These 725 objects are then subject to the orbit integration
procedure described in sections 3.3 and 3.4 of paper 1. This
gives accurate perihelia by both modelling the acceleration
of the orbit and by numerically propagating the uncertain-
ties through the nonlinear transformation of the astrometry.
To summarize: the 6D Gaussian distribution of the data (as-
trometry plus radial velocity) for each object is resampled to
produce 2000 “surrogate” measurements of the object. These
surrogates reflect the uncertainties in the position and ve-
locity (and takes into account their covariances, which can
be very large). The orbit for every surrogate is integrated
through the Galactic potential and the perihelia found. The
resulting distribution of the surrogates over the perihelion
parameters represents the propagated uncertainty. These dis-
tributions are asymmetric; ignoring this can be fatal (see sec-
tion 3.1 for an example). I summarize the distributions using

1 This number is a slight overestimate because although all of these
stars have Tycho/Hipparcos IDs and valid radial velocities, (1) not all
are automatically in TGAS (due to the its bright magnitude limit and
other omissions), and (2) objects with negative parallaxes are excluded.

Article number, page 2 of 15page.15



C.A.L. Bailer-Jones: Close encounters to the Sun in Gaia data release 1

Table 1. The number of objects (not unique stars) in the RV catalogues.
The first column gives the catalogue reference number (used in Table 3)
and the second column a reference name. The third column lists the
number of objects with valid Tycho/Hipparcos IDs which also have
|vr | ≤ 750 km s−1 and σ(vr) ≤ 10 km s−1. This is approximately the
number of objects available for searching for encounters. The fourth
column lists how many of these have dlin

ph < 10 pc. There are duplicate
stars between (and even within) the catalogues.

cat name #Tycho #(dlin
ph < 10 pc)

1 RAVE-DR5 302 371 240
2 GCS2011 13 548 157
3 Pulkovo 35 745 238
4 Famaey2005 6 047 1
5 Web1995 429 5
6 BB2000 670 5
7 Malaroda2012 1 987 12
8 Maldonado2010 349 32
9 Duflot1997 43 0

10 APOGEE2 25 760 33
11 Gaia-ESO-DR2 159 0
12 Galah 10 680 2

Total 397 788 725
Notes: References and (where used) CDS catalogue numbers for the
RV catalogues: (1) Kunder et al. (2017); (2) Casagrande et al. (2011)

J/A+A/530/A138/catalog; (3) Gontcharov (2006)
III/252/table8; (4) Famaey et al. (2005)

J/A+A/430/165/tablea1; (5) Duflot et al. (1995) III/190B; (6)
Barbier-Brossat & Figon (2000) III/213; (7) Malaroda et al. (2000)

III/249/catalog; (8) Maldonado et al. (2010)
J/A+A/521/A12/table1; (9) Fehrenbach et al. (1997)

J/A+AS/124/255/table1; (10) SDSS Collaboration et al. (2016);
(11) https://www.gaia-eso.eu; (12) Martell et al. (2017).

the median and the 5% and 95% percentiles (which together
form an asymmetric 90% confidence interval, CI).2 I use the
same Galactic model as in paper 1. The integration scheme
is also the same, except that I now recompute the sampling
times for each surrogate, as this gives a better sampling of
the orbit.

This procedure does not find all encounters, because an
initial LMA-selection is not guaranteed to include all objects
which, when properly integrated, would come within 10 pc. Yet
as the LMA turns out to be a reasonable approximation for most
stars (see next section), this approach is adequate for identifying
encounters which come much closer than 10 pc.

3. Close encounters found in TGAS

As duplicates are present in the RV catalogue, the 725 objects
found correspond to 468 unique stars (unique Tycho/Hipparcos
IDs). The numbers coming within various perihelion distances
are shown in Table 2. The data for those with dmed

ph < 2 pc are
shown in Table 3 (the online table at CDS includes all objects
with dmed

ph < 10 pc). Negative times indicate past encounters.
Figure 1 plots the perihelion times and distances. Although

the objects were selected by the LMA to come within 10 pc of
2 In paper 1 I reported the mean, although the median is avail-
able in the online supplement: http://www.mpia.de/homes/calj/
stellar_encounters/stellar_encounters_1.html. The median
is more logical when reporting the equal-tailed confidence interval, as
this interval is guaranteed to contain the median. The mean and median
are generally very similar for these distributions.

Table 2. The number of objects and stars found by the orbit integration
to have dmed

ph < dmax
ph . An object is a specific catalogue entry for a star.

Objects with potentially problematic data have not been excluded.

dmax
ph No. objects No. stars

∞ 725 468
10 646 402

5 149 97
3 56 42
2 20 16
1 2 2
0.5 1 1

−40 −20 0 20

0
50

10
0

15
0

20
0

25
0

perihelion time (tph
med) / Myr

pe
rih

el
io

n 
di

st
an

ce
 (

d phm
ed

) 
/ p

c

●●● ●

●

●

● ●●

●

●

●

● ●●●●
●

●●●
●●

●●●●●●●●●●● ●●● ●●●

●

● ●●● ●● ●● ●● ●●●● ●●●●●
●

● ●●● ●●

●

●● ● ●●● ●●●●●●●●●
●
●● ●●●●●●●●●● ●●● ●● ●●●●

●
●●

●
●●●●●●●

●

●
●●●● ● ●●●

●
● ●

●

●●●●●● ●●● ●●●● ●●●● ●● ●●● ●●●●● ●●●● ●●●● ●● ●●
●

●

●●●●●
●● ●●●●●● ● ●●● ●●●● ●●●●● ●●● ● ●●● ●●● ●●● ●●●● ● ●●●● ●●

●
●●●● ●●●●● ●●●● ●●

●

●

●

●

●

●●●●● ●

●

●●● ●●● ●●●●● ●●●●● ●●● ●●● ●● ●● ● ●●●●● ●●●●●●●●● ● ●●●

●

●● ●●●● ●● ●●●● ●●
●

●●●● ●● ●●●●
●

●●●

●

● ●●●
● ●

●● ●●● ●●●●● ● ●● ●●●● ●

●

● ●● ●● ●●●● ● ●● ●●● ●●●●●●●● ●● ●●●●●
●

●

●● ●●●● ● ●●● ●

●

●●

●

●● ●● ●●●●● ●●●●●●

●

●
● ●● ●● ● ●●●● ●

●

●●●●

●

● ●

●

●

●●

●●●●● ●●●●●●●● ●●

●

●● ●●●

●

● ●

●

●●● ●● ●●●

●

●

● ●● ●● ●● ●

●

●●●● ● ●●● ●●
●

●●●● ●● ●● ●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●

●

●●●

●
●

●

●●●●●●●● ●

●

●● ● ●●●●
● ●

●
●● ●● ●● ●

●

●●●●●●

●

● ●●●●●● ●

●

●

● ●●
●

●●●
●

●

●
●● ●●●●● ●● ●● ●●●

●

●

●
●●●● ●

●

●

●● ● ●● ●●●●● ●

●

●●●●● ●●●
●

●●● ● ●● ●●●●● ●● ●●

●

● ●●●● ● ●●● ● ●●●●● ● ●●●●●●
●

●●● ● ●●●●● ●●●●●●●●● ●●● ●●●

●

● ●
●●●

●

●●●
●●●●●● ●●●●● ●●●●●

●●● ●

●

●

● ●●

●

●

●

● ●●●●
●

●●●
●●

●●●●●●●●●●● ●●● ●●●

●

● ●●● ●● ●● ●● ●●●● ●●●●●
●

● ●●● ●●

●

●● ● ●●● ●●●●●●●●●
●
●● ●●●●●●●●●● ●●● ●● ●●●●

●
●●

●
●●●●●●●

●

●
●●●● ● ●●●

●
● ●

●

●●●●●● ●●● ●●●● ●●●● ●● ●●● ●●●●● ●●●● ●●●● ●● ●●
●

●

●●●●●
●● ●●●●●● ● ●●● ●●●● ●●●●● ●●● ● ●●● ●●● ●●● ●●●● ● ●●●● ●●

●
●●●● ●●●●● ●●●● ●●

●

●

●

●

●

●●●●● ●

●

●●● ●●● ●●●●● ●●●●● ●●● ●●● ●● ●● ● ●●●●● ●●●●●●●●● ● ●●●

●

●● ●●●● ●● ●●●● ●●
●

●●●● ●● ●●●●
●

●●●

●

● ●●●
● ●

●● ●●● ●●●●● ● ●● ●●●● ●

●

● ●● ●● ●●●● ● ●● ●●● ●●●●●●●● ●● ●●●●●
●

●

●● ●●●● ● ●●● ●

●

●●

●

●● ●● ●●●●● ●●●●●●

●

●
● ●● ●● ● ●●●● ●

●

●●●●

●

● ●

●

●

●●

●●●●● ●●●●●●●● ●●

●

●● ●●●

●

● ●

●

●●● ●● ●●●

●

●

● ●● ●● ●● ●

●

●●●● ● ●●● ●●
●

●●●● ●● ●● ●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●

●

●●●

●
●

●

●●●●●●●● ●

●

●● ● ●●●●
● ●

●
●● ●● ●● ●

●

●●●●●●

●

● ●●●●●● ●

●

●

● ●●
●

●●●
●

●

●
●● ●●●●● ●● ●● ●●●

●

●

●
●●●● ●

●

●

●● ● ●● ●●●●● ●

●

●●●●● ●●●
●

●●● ● ●● ●●●●● ●● ●●

●

● ●●●● ● ●●● ● ●●●●● ● ●●●●●●
●

●●● ● ●●●●● ●●●●●●●●● ●●● ●●●

●

● ●
●●●

●

●●●
●●●●●● ●●●●● ●●●●●

●●● ●

●

●

● ●●

●

●

●

● ●●●●
●

●●●
●●

●●●●●●●●●●● ●●● ●●●

●

● ●●● ●● ●● ●● ●●●● ●●●●●
●

● ●●● ●●

●

●● ● ●●● ●●●●●●●●●
●
●● ●●●●●●●●●● ●●● ●● ●●●●

●
●●

●
●●●●●●●

●

●
●●●● ● ●●●

●
● ●

●

●●●●●● ●●● ●●●● ●●●● ●● ●●● ●●●●● ●●●● ●●●● ●● ●●
●

●

●●●●●
●● ●●●●●● ● ●●● ●●●● ●●●●● ●●● ● ●●● ●●● ●●● ●●●● ● ●●●● ●●

●
●●●● ●●●●● ●●●● ●●

●

●

●

●

●

●●●●● ●

●

●●● ●●● ●●●●● ●●●●● ●●● ●●● ●● ●● ● ●●●●● ●●●●●●●●● ● ●●●

●

●● ●●●● ●● ●●●● ●●
●

●●●● ●● ●●●●
●

●●●

●

● ●●●
● ●

●● ●●● ●●●●● ● ●● ●●●● ●

●

● ●● ●● ●●●● ● ●● ●●● ●●●●●●●● ●● ●●●●●
●

●

●● ●●●● ● ●●● ●

●

●●

●

●● ●● ●●●●● ●●●●●●

●

●
● ●● ●● ● ●●●● ●

●

●●●●

●

● ●

●

●

●●

●●●●● ●●●●●●●● ●●

●

●● ●●●

●

● ●

●

●●● ●● ●●●

●

●

● ●● ●● ●● ●

●

●●●● ● ●●● ●●
●

●●●● ●● ●● ●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●

●

●●●

●
●

●

●●●●●●●● ●

●

●● ● ●●●●
● ●

●
●● ●● ●● ●

●

●●●●●●

●

● ●●●●●● ●

●

●

● ●●
●

●●●
●

●

●
●● ●●●●● ●● ●● ●●●

●

●

●
●●●● ●

●

●

●● ● ●● ●●●●● ●

●

●●●●● ●●●
●

●●● ● ●● ●●●●● ●● ●●

●

● ●●●● ● ●●● ● ●●●●● ● ●●●●●●
●

●●● ● ●●●●● ●●●●●●●●● ●●● ●●●

●

● ●
●●●

●

●●●
●●●●●● ●●●●● ●●●●●

Fig. 1. Perihelion times and distances computed by orbit integration for
all 725 objects. Open circles show the median of the perihelion time
and distance distributions. The error bars show the limits of the 5% and
95% percentiles (which together form an asymmetric 90% confidence
interval). Note that this set of objects includes duplicates (see Table 2).

the Sun, some of the orbit integrations result in much larger me-
dian perihelion distances. The differences between the two es-
timates – LMA and median of orbit-integrated surrogates – are
shown in Figure 2. The differences arise both due to gravity and
to the resampling of the data. The largest differences are seen
at larger (absolute) times. These objects have small and low-
significance parallaxes and proper motions. The resulting distri-
bution over the perihelion parameters is therefore very broad (as
seen from the large confidence intervals in Figure 1), with the
consequence that the median can differ greatly from the LMA
value. If I use the LMA to find the perihelion of the surrogates
and then compute their median, there are still large differences
compared to the orbit integration median (up to 170 pc; the plot
of differences looks rather similar to Figure 2). This proves that
the inclusion of gravity, and not just the resampling of the data,
has a significant impact on the estimated perihelion parameters.

As we are only interested in encounters which come within
a few pc, Figure 3 zooms in to the perihelion range 0–5 pc. The
perihelion speeds for these objects are shown in Figure 4.

Immediately apparent in Figure 3 is the very close encounter
at 1.3 Myr in the future. This is the K7 dwarf Gl 710 (Tyc 5102-
100-1, Hip 89825), known from many previous studies to be a
very close encounter. In paper 1 I found a median encounter dis-
tance of 0.26 pc (90% CI 0.10–0.44 pc). TGAS reveals a much
smaller proper motion than Hipparcos-2: 0.50± 0.16 mas yr−1 as
opposed to 1.8 ± 1.2 mas yr−1 (the parallax is the same to within
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Table 3. Perihelion parameters for all objects with a median perihelion distance (median of the samples; dmed
ph ) below 2 pc, sorted by this value.

The first column list the Tycho ID. The second column indicates the RV catalogue (see Table 1). Columns 3, 6, and 9 are tmed
ph , dmed

ph , and vmed
ph

respectively. The columns labelled 5% and 95% are the bounds of corresponding confidence intervals. Columns 12–14 (“% samples”) indicate
the percentage of surrogates for each object for which dph is below 0.5, 1.0, and 2.0 pc respectively. Columns 15–20 list the nominal parallax ($),
proper motion (µ), and radial velocity (vr) along with their standard errors. Objects with potentially problematic data have not been excluded. The
online table at CDS includes all objects with dmed

ph <10 pc (in a handful of cases for dmed
ph > 2 pc the ID is Hipparcos, not Tycho).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ID tph / kyr dph / pc vph / km s−1 % samples $ σ($) µ σ(µ) vr σ(vr)
med 5% 95% med 5% 95% med 5% 95% 0.5 1 2 mas mas yr−1 km s−1

5102-100-1 3 1354 1304 1408 0.08 0.05 0.10 13.8 13.3 14.3 100 100 100 52.35 0.27 0.50 0.17 -13.8 0.3
4744-1394-1 1 -1821 -2018 -1655 0.87 0.61 1.20 121.0 118.6 123.6 1 74 100 4.44 0.26 0.59 0.12 120.7 1.6

1041-996-1 3 3386 3163 3644 1.26 1.07 1.50 30.4 29.9 30.9 0 1 100 9.51 0.41 0.57 0.05 -30.4 0.3
5033-879-1 1 -704 -837 -612 1.28 0.48 2.63 532.7 522.7 543.2 6 30 83 2.60 0.25 0.91 0.78 532.4 6.2

709-63-1 3 -497 -505 -490 1.56 1.53 1.59 22.2 21.9 22.5 0 0 100 87.66 0.29 56.44 0.09 22.0 0.2
4753-1892-2 3 -948 -988 -910 1.58 1.46 1.72 55.0 54.5 55.5 0 0 100 18.75 0.47 6.52 0.05 55.0 0.3
4753-1892-1 3 -949 -990 -908 1.59 1.46 1.73 55.0 54.5 55.5 0 0 100 18.75 0.47 6.52 0.05 55.0 0.3
4753-1892-2 2 -970 -1027 -921 1.62 1.49 1.78 53.7 51.6 55.9 0 0 99 18.75 0.47 6.52 0.05 53.7 1.3
4753-1892-1 2 -971 -1028 -915 1.63 1.48 1.78 53.8 51.5 55.9 0 0 100 18.75 0.47 6.52 0.05 53.7 1.3

4855-266-1 3 -2222 -2297 -2153 1.67 1.51 1.84 34.6 34.1 35.1 0 0 99 12.74 0.24 1.68 0.13 34.5 0.3
8560-8-1 1 -634 -656 -614 1.72 1.25 2.26 86.5 85.4 87.4 0 0 80 17.84 0.33 9.79 1.78 86.4 0.6

6510-1219-1 3 -1951 -2021 -1880 1.74 1.66 1.81 14.6 14.2 15.1 0 0 100 34.19 0.29 6.29 0.04 14.6 0.3
5383-187-1 10 -870 -1324 -651 1.74 0.40 6.23 686.8 683.2 690.1 7 24 56 1.63 0.36 0.55 0.57 686.7 2.1

6510-1219-1 2 -1975 -2028 -1924 1.76 1.69 1.82 14.5 14.1 14.8 0 0 100 34.19 0.29 6.29 0.04 14.4 0.2
1315-1871-1 3 -651 -663 -640 1.78 1.72 1.84 40.6 40.4 40.7 0 0 100 36.93 0.40 21.13 0.04 40.5 0.1
1315-1871-1 2 -651 -663 -640 1.78 1.72 1.84 40.6 40.4 40.7 0 0 100 36.93 0.40 21.13 0.04 40.5 0.1

6975-656-1 1 -457 -554 -390 1.80 0.89 3.89 563.1 547.2 578.3 0 9 58 3.79 0.39 2.76 1.72 562.9 9.2
4771-1201-1 3 -1848 -1917 -1783 1.89 1.70 2.09 22.2 21.6 22.9 0 0 82 23.79 0.33 4.96 0.03 22.2 0.4

9327-264-1 1 -1889 -2014 -1777 1.91 1.10 3.18 52.7 51.3 54.2 0 3 56 9.83 0.34 1.44 0.82 52.4 0.9
7068-802-1 1 -2641 -2857 -2455 1.99 0.54 4.59 65.5 62.6 68.4 4 17 50 5.67 0.23 0.76 0.66 65.0 1.8
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Fig. 2. Difference between perihelion estimates from orbit integration
of surrogates (dmed

ph ) and the linear motion approximation (dlin
ph ), on a

log scale. The black symbols are for dmed
ph > dlin

ph , the red symbols for
dmed

ph < dlin
ph . The set of objects is the same as shown in Figure 1, but

excluding, for plotting purposes, the three points with |tmed
ph | > 20 Myr.

2%). Using the same radial velocity, my orbit integration now
gives a median perihelion distance of 0.08 pc (90% CI 0.05–
0.10 pc), equivalently 16 000 AU (90% CI 10 000–21 000 AU).
This makes Gl 710 once again the closest known stellar en-
counter.3 Berski & Dybczyński (2016) found a very similar value
using the same data and a similar method. Although this close
approach will take Gl 710 well within the Oort cloud – and its

3 Even at this close distance the gravitational interaction with the Sun
can be neglected. Using the formulae in paper 1 (section 5.3), the path
would be deflected by only 0.05 ◦, bringing Gl 710 just 7 AU closer.
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Fig. 3. As Figure 1, but zoomed in to the range 0 ≤ dmed
ph ≤ 5. The time

axis is scaled to show all encounters in this distance range.

relative velocity at encounter is low (14 km s−1) – its low mass
(around 0.6 M�) limits its perturbing influence. This is analysed
by Berski & Dybczyński (2016).

The second closest encounter is Tyc 4744-1394-1 at
dmed

ph = 0.87 pc, two million years ago. This is based on a RAVE
radial velocity of 120.7 ± 1.6 km s−1. A second RAVE measure-
ment gives 15.3±1.2 km s−1, which puts the encounter at a much
larger distance of dmed

ph = 36.6 pc, 12.9 Myr in the past. This dis-
crepancy may suggest both measurements are unreliable.

Tyc 1041-996-1 (Hip 94512) was found in paper 1 to en-
counter between 0.59–3.30 pc or 0.58–4.60 pc (90% CI), de-
pending on the whether the Tycho-2 or Hipparcos-2 proper mo-
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Fig. 4. Median perihelion velocities from the orbit integrations for those
encounters shown in Figure 3.

tion was adopted. TGAS puts a much tighter constraint on its
perihelion distance, using the same radial velocity.

Tyc 5033-879-1 is not in Hipparcos so was not in paper 1,
and has not previously been reported as a close encounter. Its
large radial velocity is from RAVE (DR5). The spectrum has a
very low SNR, and the standard deviation computed by resam-
pling is very high (StdDev_HRV = 246 kms), so this measure-
ment is probably spurious. This catalogue lists a second value
of −6.5 ± 7.0 km s−1 for the same RAVE ID (RAVE J160748.3-
012060). Another object with a different RAVE ID (RAVE
J160748.3-012059) – but very close by, and matched to the same
Tycho ID by RAVE – has −11.6 ± 2.1 km s−1.

Tyc 709-63-1 is Hip 26335. I found this to be a close en-
counter with very similar perihelion parameters in paper 1. The
TGAS measurements are very similar to those from Hipparcos-
2, but more precise.

I make no special provision for unresolved physical binaries
in my search for encounters. The two objects Tyc 4753-1892-1
and Tyc 4753-1892-2 listed in Table 3 are in fact the two com-
ponents of the spectroscopic binary Hip 25240, for which there
is just one entry in TGAS (but both were listed separately in two
RV catalogues). Their mutual centre-of-mass motion means the
encounter parameters computed will be slightly in error. This
could be corrected for in some known cases, but the many more
cases of unidentified binarity would remain uncorrected. The sit-
uation will improve to some degree once Gaia includes higher
order astrometric solutions for physical binaries (see section 6).

Many of the other objects found in this study were likewise
found to be close encounters in paper 1, sometimes with differ-
ent perihelion parameters. The main reasons why some were not
found in the earlier study are: not in the Hipparcos catalogue (for
example because they were too faint); no radial velocity avail-
able; the TGAS and Hipparcos astrometry differ so much that
dph was too large using the Hipparcos data to be reported in pa-
per 1.

A few of the other closest encounters in Table 3 have sus-
piciously high radial velocities. Some or all of these may be er-
rors, although it must be appreciated that close encounters are
generally those stars which have radial velocities much larger
than their transverse velocities. Tyc 5383-187-1 is, according to
Simbad, a B9e star. If the radial velocity from APOGEE (SDSS
2M06525305-1000270) is correct – and this is questionable – its
perihelion speed was a whopping 687 km s−1. As its proper mo-
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Fig. 5. Comparison of object encounters found in the present work with
TGAS (left) and those found in paper 1 from Hipparcos (right). Both
sets of estimates are from the linear motion approximation of the nom-
inal data. In the left and right panels there are 16 objects and 1 object
respectively which lie at times beyond the limits of the plots. Both pan-
els shows all objects, not unique stars, so include duplicates.

tion is very uncertain (0.55 ± 0.57) mas yr−1, the range of peri-
helion distances is huge. The radial velocity for Tyc 6975-656-1
is from RAVE. The value StdDev_HRV = 545 km s−1 in that cat-
alogue indicates its radial velocity, and therefore its perihelion
parameters, are highly unreliable.

Slightly surprising is the fact that 18 of the 20 objects with
dmed

ph < 2 pc have encounters in the past. However, these 20
objects only correspond to 15 systems, and 13 of 15 is not so
improbable. Moreover, for dmed

ph < 3 pc the asymmetry is much
weaker: 35 objects have encounters in the past vs 21 in the fu-
ture.

Figure 5 compares the encounters found in paper 1 with
those found in the present study. For this comparison I use the
perihelion parameters computed by the LMA with the nominal
data, as this permits an unbiased comparison given how the two
samples were drawn up. The most striking feature is that the
Hipparcos-based study finds more encounters (1704 vs. 725 ob-
jects; 813 vs. 468 stars), despite the fact that the number of ob-
jects searched for encounters (i.e. those with complete and ap-
propriate astrometry and radial velocities) is nearly four times
larger in the present study: 397 788 compared to 101 363. Look-
ing more closely, we also see that the present study finds com-
paratively few encounters at perihelion times near to zero. This is
partly due to the fact that TGAS omits bright stars: brighter stars
tend to be closer, and therefore near perihelion now (because
the closer they are, the smaller the volume of space available
for them to potentially come even closer). TGAS’s bright limit
is, very roughly, G = 4.5 mag (Gaia Collaboration et al. 2016a),
whereas Hipparcos didn’t have one. For the encounters in pa-
per 1 we indeed see a slight tendency for brighter stars to have
smaller perihelion times. Some of the brightest stars in that study
– and missed by TGAS – were also the closest encounters listed
in Table 3 of paper 1, and include well-known stars such as Al-
pha Centauri and Gamma Microscopii. Yet as we shall see in
section 4), the encounter model actually predicts a minimum in
the density of encounters at exactly zero perihelion time. Note
that Barnard’s star is missing because TGAS does not include
the 19 Hipparcos stars with proper motions larger than 3500 mas
(Lindegren et al. 2016).

In paper 1 I drew attention to the dubious data for a number
of apparent close encounters. This included the closest encounter
found in that study, Hip 85605. Unfortunately this and several
other dubious cases are not in TGAS, so further investigation
will have to await later Gaia releases. The closest-approaching
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Fig. 6. As Figure 3, but now plotting each object as a circle, the area
of which is proportional to 1/(vmed

ph (dmed
ph )2), which is proportional to the

impulse transferred the Oort cloud per unit mass of encountering star.
(The plotting symbol is a circle with a diagonal cross, but the latter is not
apparent in the smallest symbols.) The values for the plotted symbols
range from 0.0088 to 3.5 s km−1 pc−2.

questionable case from paper 1 in the present study is Hip 91012
(Tyc 5116-143-1). This was flagged as dubious on account of
its very high radial velocity in RAVE-DR4 (−364 ± 22 km s−1;
other RV catalogues gave lower values and thus more distant en-
counters). The TGAS astrometry agrees with Hipparcos, but the
RAVE-DR5 radial velocity has a large uncertainty, and so was
excluded by my new selection procedure. This same deselection
applies to several other cases not found in the present study. Dy-
bczyński & Berski (2015) discuss in more detail some of the
individual problematic cases in paper 1.

More interesting is Hip 42525 (Tyc 2985-982-1). The paral-
lax is much smaller in TGAS than in Hipparcos-2: 5.9± 0.5 mas
compared to 68.5 ± 15.5 mas. (The proper motions agree.) This
puts its perihelion (according to the LMA) at around 90 pc. In
paper 1 I pointed out that the Hipparcos catalogue flagged this
as a likely binary, with a more likely parallax of 5.08±4.28 mas.
TGAS confirms this, but with ten times better precision. Its com-
panion is Tyc 2985-1600-1, also in TGAS.

Equation 1 approximates the change of momentum of an
Oort cloud comet due to an encounter. As we do not (yet) know
the masses of most of the encountering stars (not all have the
required photometry/spectroscopy), this cannot be determined.
But we can compute 1/(vph d2

ph), which is proportional to the
velocity change per unit mass of encountering star. This is visu-
alized in Figure 6 as the area of the circles. The importance of
Gl 710 compared to all other stars plotted is self-evident. Even
if the second largest circle corresponded to a star with ten times
the mass, Gl 710 would still dominate the momentum transfer.
This is in part due to the squared dependence on dph. However,
for very close encounters – where the star comes within the Oort
cloud – the impulse is better described as 1/(vph dph) (Rickman
1976), in which case Gl 710 is not be so extreme compared to
other stars. The impact of the different encounters is better deter-
mined by explicit numerical modelling, as done, for example, by
Dybczyński (2002), Rickman et al. (2012), and Feng & Bailer-
Jones (2015).

0 5 10 15 20 25 30 35

perihelion distance / pc

Fig. 7. Distribution of the perihelion distance (from the orbital integra-
tion of the 2000 surrogates) for Tyc 6528-980-1. The green, red, and
blue lines (left to right) show the nominal, LMA, and median estimates.
This demonstrates that the nominal estimate – from integrating the orbit
of just the nominal data – can be very unrepresentative of the distribu-
tion we get when we account for the uncertainties in the data.

3.1. Comments on another TGAS study

Just after I had submitted this paper for publication, there ap-
peared on arXiv a paper by Bobylev & Bajkova (2017) reporting
encounters found from TGAS/RAVE-DR5 by integrating orbits
in a potential.

They find three encounters they consider as reliable, defined
as having fractional errors of less than 10% in initial position
and velocity, and a radial velocity error of less than 15 km s−1(all
three have σ(vr) < 4.1 km s−1). One of these is Gl 710, for which
they quote dph = 0.063±0.044 pc, broadly in agreement with my
result. Their other two results are quite different from mine and
are probably erroneous.

The first is Tyc 6528-980-1, which they put at dph = 0.86 ±
5.6 pc. It’s not clear from their brief description how this uncer-
tainty is computed (seemingly the standard deviation of a set of
surrogate orbits), but such a large symmetric uncertainty is inad-
missible: just a 0.15-sigma deviation corresponds to an impos-
sible negative perihelion distance. Their quoted best estimate of
0.86 pc is also dubious. I derive a very different value using the
same input data: dmed

ph = 7.18 pc with a 90% CI of 1.75–16.9 pc
(the large range being a result of the low significance proper mo-
tion). The difference is unlikely to arise from the different poten-
tial adopted. Even the LMA with the same data gives a perihelion
distance of 6.9 pc. I suspect their estimate comes directly from
integrating an orbit for the nominal data. When I do this I get a
perihelion distance of 1.60 pc. Yet this value is not representative
of the distribution of the surrogates, as can be seen in Figure 7.
Although the measured astrometric/RV data have a symmetric
(Gaussian) uncertainty distribution, the nonlinear transformation
to the perihelion parameters means not only that this distribution
is asymmetric, but also that the nominal data is not necessarily
near the centre (it is particularly extreme in this case). We have
to correctly propagate the uncertainties not only to get a sensi-
ble confidence interval, but also to get a sensible point estimate.
The perihelion time I compute from the nominal data (-8.9 Myr)
is consistent with the median (−8.9 Myr) and 90% confidence
interval (−12.2 to −7.0 Myr) in this case, whereas Bobylev &
Bajkova report −2.8 ± 0.7 Myr.

Their other encounter (Tyc 8088-631-1) shows a similar
problem. They quote a perihelion distance of 0.37 ± 1.18 pc,
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whereas I find dmed
ph = 1.2 pc with a 90% CI of 0.6–5.9 pc, and

the LMA puts it at 0.95 pc.
Bobylev & Bajkova list in their Table 3 several other en-

counters which they consider less reliable. These all have radial
velocity uncertainties larger than 10 km s−1, so didn’t enter my
analysis. Bobylev & Bajkova do not mention several close sev-
eral encounters which I find, even though their RAVE selection
is more inclusive. This may be because they choose a smaller
limit on perihelion distance.

4. Accounting for survey incompleteness

A search for stellar encounters is defined here as complete if
it discovers all stars which come within a particular perihelion
time and perihelion distance. Incompleteness arises when ob-
jects in this time/distance window are not currently observable.
This may occur in a magnitude-limited survey because a star’s
large distance may render it invisible. The completeness is quan-
tified here by the function C(tph, dph), which specifies the fraction
of objects at a specified perihelion time and distance which are
currently observable.

I estimate C by constructing a model for encounters and de-
termining their observability within a survey. The encounter data
are not used. I first define a model for the distribution and kine-
matics of stars. In its most general form this is a six-dimensional
function over position and velocity (or seven-dimensional func-
tion if we also include time evolution of the distributions). We
then integrate the orbits of these stars to derive the probabil-
ity density function (PDF) over perihelion time and distance,
Pmod(tph, dph). (Below I neglect gravity, so this integration will
be replaced by the LMA.) The subscript “mod” indicates this
has been derived from the model and, crucially, has nothing to
do with the potential non-observability of stars. I then repeat
this procedure, but taking into account the selection function
of the survey. In general this would involve a spatial footprint,
an extinction map, as well as bright and faint magnitude lim-
its and anything else which leads to stars not being observed.
This allows us to derive P∗exp(tph, dph), where the “exp” sub-
script indicates this is the distribution we expect to observe
in the survey (the asterisk indicates this is not a normalized
PDF; more on this later). As shown in appendix B, the ratio
P∗exp(tph, dph)/Pmod(tph, dph) is the completeness function.

In principle we could extend the completeness function to
also be a function of the perihelion speed, vph (and also the three
other perihelion parameters which characterize directions). But
I will assume we are 100% complete in this parameter, i.e. we
don’t fail to observe stars on account of their kinematics.

4.1. The model

I implement the above approach using a very simple model for
the encountering stars. Let r be the distance from the Sun to a
star of absolute magnitude M and space velocity (relative to the
Sun) v. My assumptions are as follows:4

1. the stellar spatial distribution is isotropic, described by P(r).
2. the stellar velocity distribution is isotropic and homoge-

neous, described by P(v);
3. the stellar luminosity function, P(M), is homogeneous;
4. there is no extinction;
5. stellar paths are linear (no gravity);

4 “Homogeneous” here means “the same at all points in space”.

star
r

Sun

!
h

dph

α

P

Fig. 8. The geometry of a close encounter for a star initially at distance
r and reaching a perihelion distance of dph at point P, whereby dph ≤ r.

6. the survey selection function, S (m), is only a function of the
apparent magnitude m. It specifies the fraction of objects ob-
served at a given magnitude.

Note that P(r), P(v), and P(M) are all one-dimensional
functions, which will greatly simplify the computation of
Pmod(tph, dph) and P∗exp(tph, dph). The symmetry in these assump-
tions means any distribution will be symmetric in time. We there-
fore only need to consider future encounters.

Although my model is very simple (see the end of this sub-
section), it turns out to be reasonably robust to some changes
in the assumed distributions, as we shall see. This is because
we are only interested in how Pmod(tph, dph) changes under the
introduction of the selection function. The poorly-defined selec-
tion functions of the TGAS data and the RV catalogues mean we
would gain little from constructing a more complex model, yet
we would pay a price in interpretability.

Using these assumptions I now derive P(tph, dph). The initial
steps are valid for both the “mod” and “exp” distributions, so I
omit the subscripts where they are not relevant.

The geometry for an arbitrary star currently at distance r
from the Sun is shown in Figure 8. The star travels a distance
x to reach perihelion at point P, when its distance from the Sun
is dph. Note that dph ≤ r, otherwise the star has already been at
perihelion (and I neglect past encounters due to time symmetry).
To achieve a perihelion between distance dph and dph + δdph, this
star must pass through a circular ring of inner radius h and in-
finitesimal width δdph. Note that δdph is parallel to dph and so
perpendicular to the direction of motion. The area of this circu-
lar ring as seen from the initial position of the star is therefore
δA = 2πhδdph, its circumference times its width. As all direc-
tions of travel for the star are equally probable (isotropic veloc-
ity distribution), the probability that this star has a perihelion
distance between dph and dph + δdph is just proportional to δA.
That is

P(dph |r) δdph ∝ δA , so (2)
P(dph |r) ∝ h . (3)

From the diagram we see that

sinα =
dph

r
=

h
x

(4)
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Fig. 9. The PDF over the perihelion distance for stars with different
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different colours, as described by the model (section 4.1). The lines for
r > 20 pc extend beyond the right boundary of the plot, but have the
same shape, dropping to zero at dph = r.

and

x2 = r2 − d2
ph (5)

from which it follows that

h = dph

1 − d2
ph

r2

1/2

. (6)

We can normalize analytically to get

P(dph |r) =
3dph

r2

1 − d2
ph

r2

1/2

where dph ≤ r . (7)

Plots of this distribution for different values of r are shown in
Figure 9. This may be counter-intuitive. For fixed r the PDF is
proportional to h (equation 3). As we increase dph from zero, h
initially increases from zero. As the line Sun–P is always perpen-
dicular to the line P–star, increasing dph beyond some point leads
to h decreasing. The PDF therefore has a maximum at dph < r.

We now compute the distribution over perihelion times. As
velocities are constant, the time of the encounter, tph, is c0x/v,
where v is the velocity. Using parsecs for distance, years for
time, and km s−1 for velocity, c0 = 0.97779 × 106. For a given x
there is a one-to-one correspondence between v and tph. As x is
determined by dph and r, this means we can write

P(tph |dph, r) dtph = P(v |dph, r) dv. (8)

Because we are assuming an isotropic and homogeneous veloc-
ity distribution, P(v), we can write the term on right as P(v) dv.
It then follows that

P(tph |dph, r) = P(v)

∣∣∣∣∣∣ dv
dtph

∣∣∣∣∣∣ (9)

= P
(
v =

c0x
tph

)
c0x
t2
ph

where dph ≤ r (10)

with x given by equation 5. This distribution is normalized (pro-
vided P(v) is).

The model PDF we want is related to the two PDFs we just
derived by marginalization, namely

Pmod(tph, dph) =

∫ ∞

dph

P(tph |dph, r)P(dph |r)Pmod(r) dr . (11)

Typically, this integral must be computed numerically. I do this
below by integrating on a grid.

The impact of the selection function is to reduce the number
of stars we would otherwise see. The selection function depends
only on apparent magnitude which, as I neglect extinction, is
m = M + 5(log r − 1). Consequently the selection function only
modifies the distance distribution, Pmod(r), to become

P∗exp(r) = Pmod(r)
∫ +∞

−∞

P(M)S (m) dM . (12)

This PDF is not normalized (I use the asterisk to remind us of
this). As 0 ≤ S (m) ≤ 1, P∗exp(r) ≤ Pmod(r) for all r, i.e. the
change from Pmod(r) to P∗exp(r) reflects the absolute decrease in
the distribution due to the selection function. This integral I also
evaluate on a grid. The expected PDF over the perihelion time
and distance is then

P∗exp(tph, dph) =

∫ ∞

dph

P(tph |dph, r)P(dph |r)P∗exp(r) dr (13)

which is also not normalized. The completeness function is de-
fined as

C(tph, dph) =
Fexp(tph, dph)
Fmod(tph, dph)

. (14)

where Fmod(tph, dph) and Fexp(tph, dph) are the model and ex-
pected encounter flux – number of encounters per unit perihelion
time and distance – respectively. As shown in appendix B, the
completeness can be written as

C(tph, dph) =
P∗exp(tph, dph)

Pmod(tph, dph)
, (15)

which is the ratio of the two PDFs I just derived. For all tph and
dph, 0 ≤ C(tph, dph) ≤ 1. This completeness function gives the
probability (not probability density!) of observing an object at a
given perihelion time and distance. I will use it in section 4.3 to
infer the encounter rate.

To compute the completeness function we need to select
forms for the various input distributions. These are shown in
Figure 10. For the distance distribution I use an exponentially
decreasing space density distribution (Bailer-Jones 2015b)

Pmod(r) =
1

2L3 r2e−r/L where r > 0 (16)

and L is a length scale, here set to 100 pc. This produces a uni-
form density for r � L. This is shown in panel (a) as the solid
line. This form has been chosen mostly for convenience, with a
length scale which accommodates the decrease in density due to
the disk scale height. The dashed line in panel (a) is P∗exp(r). As
expected, the selection function reduces the characteristic dis-
tance out to which stars can be seen. Panels (b) and (c) show
the velocity and absolute magnitude distributions respectively.
These are both implemented as shifted/scaled beta distributions,
so are zero outside the ranges plotted. Again these have been
chosen mostly for convenience. The luminosity distribution is a
rough fit to the distribution in Just et al. (2015), with a smooth

Article number, page 8 of 15page.15



C.A.L. Bailer-Jones: Close encounters to the Sun in Gaia data release 1

0 200 400 600 800 10000.
00

00
0.

00
10

0.
00

20

r / pc

P
(r

)

a

0 50 100 150 200 250 3000.
00

0
0.

00
4

0.
00

8

v / km s−1

P
(v

)

b

−5 0 5 10 15 20

0.
00

0.
04

0.
08

M / mag

P
(M

)

c

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m / mag

S
(m

)

d

Fig. 10. The input distributions for the completeness model are the (a)
distance (solid line), (b) space velocity, (c) absolute magnitude (normal-
ized PDFs). The selection function (on apparent magnitude) is shown in
panel (d). This modifies the model distance distribution to become the
expected distribution shown as the dashed line in panel (a).

extension to fainter magnitudes. The lower end of the velocity
distribution is a reasonable fit to the TGAS stars, but I have ex-
tended it to larger velocities to accommodate halo stars. This
distribution ignores the anisotropy of stellar motions near to the
Sun (e.g. Feng & Bailer-Jones 2014). But as I am not concerned
with the (l, b) distribution of encounters, this is not too serious
(I effectively average over (l, b)). None of these distributions is
particularly realistic, but are reasonable given the already limit-
ing assumptions imposed at the beginning of this section. Earlier
attempts at completeness correction for encounter studies used
even simpler assumptions. In section 4.5 I investigate the sen-
sitivity of the resulting completeness function to these choices.
Panel (d) models the TGAS selection function, as derived from
the information given in Høg et al. (2000) and Lindegren et al.
(2016). Due to the preliminary nature of the TGAS astromet-
ric reduction, the complex selection function of the Tycho cat-
alogue, and what was included in TGAS, this is a simple ap-
proximation of the true (unknown) TGAS selection function. In
practice the selection function does not depend only on appar-
ent magnitude. In particular, there are some bright stars fainter
than my bright limit of G=4.5 that are not in TGAS. The only
way to accommodate for such an incompleteness would be to
inflate the encounter rate based on other studies, but this comes
with its own complications, such as how to model their incom-
pletenesses. The goal in the present work is to explore the conse-
quences of a very simple model. Once we have data with better-
defined selection functions, more complex – and harder to inter-
pret – models will become appropriate and necessary.

4.2. Model predictions

Using these input distributions, the resulting distribution
Pmod(tph, dph) for the model is shown in the top left panel of Fig-
ure 11. The distribution we expect to observe – i.e. after applica-
tion of the selection function – is show in the top right panel. The
one-dimensional conditional distributions derived from these,
e.g.

Pmod(dph | tph) =
Pmod(tph, dph)∫ ∞

0 Pmod(tph, d′ph) dd′ph

(17)

are shown in the bottom two rows.
By construction, these distributions are symmetric about

tph = 0. Consider the form of Pmod(tph |dph) in the bottom left
panel of Figure 11. This increases from zero at tph = 0 to a max-
imum somewhere between 0 and 0.25 Myr (depending on dph)
before decreasing at larger tph. This can be understood from the
encounter geometry and the combination of the input distance
and velocity distributions. Stars that encounter in the very near
future are currently nearby (small r), but “nearby” has a limited
volume (∝ r3) and so a limited supply of stars. Thus the further
into the future encounters occur, the more volume there is avail-
able for their present positions, so – provided the space density
doesn’t drop – the more encounters there can be. This explains
the increase in Pmod(tph |dph) at small tph. But at large enough dis-
tances, the space density of stars does drop (Figure 10a), so the
number of potentially encountering stars also decreases. These
currently more distant stars generally have encounters further in
the future, which is why Pmod(tph |dph) decreases at larger tph.
Stars coming from L = 100 pc (where the space density has
dropped off by a factor of e−1) with the most common space ve-
locity (60 km s−1, the mode of P(v) in Figure 10b) take 1.7 Myr
to reach us, and we see in the figure that Pmod(tph |dph) has al-
ready dropped significantly by such times.5

The P(tph, dph) distribution is not invariant under translations
in the perihelion time, but this does not mean we are observing
at a privileged time. After all, there is no time evolution of the
stellar population in our model, so we would make this same
prediction for any time in the past or future. It is important to
realise that Figure 11 shows when and where stars which we ob-
serve now will be at perihelion. The drop-off at large perihelion
times is a result of the adopted spatial and velocity distributions.
In some sense these distributions are not self-consistent, because
this velocity distribution would lead to a changing spatial distri-
bution.

Other than for very small values of tph, we see that
Pmod(dph | tph) increases linearly with dph over the perihelion dis-
tances shown (0–10 pc). The number of encounters occurring
within a given distance, which is proportional to the integral of
this quantity, therefore varies as d2

ph. This behaviour may seem
counter-intuitive (e.g. for a uniform density, the number of stars
within a given distance grows as the cube of the distance). But it
can again be understood when we consider the phase space vol-
ume available for encounters: In order for a star to encounter at
a distance dph of the Sun, it must traverse a thin spherical shell
(centered on the Sun) of radius dph. The volume of this shell
scales as d2

ph, so the number of stars traversing this volume also
scales as d2

ph. Thus the number of encounters per unit perihelion
distance, which is proportional to Pmod(dph | tph), scales as dph, as
the model predicts. This will break down at large dph, because
even though the phase space available for encountering contin-
ues to grow, the number of stars available to fill it does not, be-
cause of the form of Pmod(r). Thus Pmod(dph | tph) will decrease

5 When using a much larger length scale L, and/or a much smaller
maximum velocity, then essentially all the encounters that reach us
within a few Myr come from regions with the same, constant, space den-
sity. For example, using a velocity distribution with a mode at 20 km s−1,
then in 2.5 Myr stars most stars come from within 50 pc, out to which
distance the space density has dropped by no more than 5% when us-
ing L = 1000 pc. With this alternative model we still see a rise in
Pmod(tph |dph) like that in Figure 11 (now extending up to 1.5 Myr for
the largest dph on account of the lower speeds). But the curves then re-
main more or less flat out to 5 Myr, which reflects the constant space
density origin of most of the encountering stars.
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Fig. 11. The distribution of stellar encounters in the model (left column of plots) and what we expect to observe from this model given the selection
function (right column). The top row of plots shows the two-dimensional PDFs Pmod(tph, dph) (left) and P∗exp(tph, dph) (right) on a colour scale in
units Myr−1pc−1. The colour scale covers the full range of densities plotted (and is different in the two cases, being a factor of 4.4 larger for the
model). The middle row shows the one-dimensional conditional PDFs over perihelion distance for different values of tph ranging from 100 kyr
to 5 Myr in steps of 20 kyr. These are vertical cuts through the two-dimensional PDF (and re-normalized, as given by equation 17 for the model
distribution). The bottom row shows the one-dimensional conditional PDFs over perihelion time for different values of dph ranging from 0.1 pc to
10 pc in steps of 0.1 pc. Only the positive perihelion times are shown for the four conditional plots, which also use different density scales (vertical
axes).

for sufficiently large dph (which anyway must occur, because the
PDF is normalized). Examination of Pmod(dph | tph) out to much
larger distances than those plotted confirms this. There is a sec-
ond contribution to this turn-over, namely that at smaller tph the
volume from which the encounters can come is also smaller (as
explained earlier). Thus for these times we begin to “run out”

of encounters already at smaller values of dph. This can be seen
as a levelling-off of Pmod(dph | tph) at very small tph in Figure 11
(upper lines in middle left panel).

The expected distributions (the right column of Figure 11)
are qualitatively similar to the model distributions. The main
difference is that the expected distribution is squeezed toward
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Fig. 12. As the top right panel of Figure 11, now overplotted with
the TGAS encounters found using the linear motion approximation
(tlin

ph , d
lin
ph ), with duplicates removed at random.

closer times. This is consistent with the fact that we only observe
the brighter and therefore generally nearer stars in our survey,
which correspondingly have smaller encounter times.

Figure 12 overplots the perihelion times and distances of the
TGAS encounters with this expected distribution. For this plot I
have used the encounters as found with the linear motion approx-
imation, rather than the orbit integrations, because the latter will
be incomplete near to 10 pc (as explained in section 2). I show
only the 439 unique stars (rather than all objects), with dupli-
cates removed at random. As the model is very simple we do not
expect good agreement with the observations. But the data show
a similar distribution, in particular fewer encounters both at large
times and at times near to zero. Recall that the encounter model
shows an intrinsic minimum – in fact a zero – at tph = 0, i.e. it
is not due to observational selection effects. Rather it is due to
the vanishing amount of phase space available for encountering
stars as tph decreases to zero. So we expect to see this in the data.
While we see it here, it is not clearly discernable in my earlier
Hipparcos-based study (Figure 2 of paper 1).

The completeness function (computed with equation 15) is
shown in the top panel of Figure 13. Formally C(tph = 0, dph)
and C(tph, dph = 0) are undefined (zero divided by zero), but
given the time symmetry and the form of the plots, it is clear that
at fixed dph the function varies continuously at tph = 0, so I use
constant interpolation to fill this. The true completeness will not
go to unity at tph = 0 for very small dph, because such encounter-
ing stars would currently be so close and hence some so bright
that they would be unobservable due to the bright limit of the
selection function.6 I avoid the formal singularity at dph = 0 in
the following by using a lower limit of dph = 0.1 pc. This and the
constant interpolation have negligible impact on the following
results.

We see from Figure 13 that the completeness ranges from
0.05 at large perihelion times to 0.57 for very close times. The
mean completeness for |tph| < 5 Myr and dph < 5 pc is 0.091

6 As I don’t compute C to arbitrarily small values of tph, the faint mag-
nitude limit also prevents the plotted completeness going to one. For
tph = 20 kyr – the smallest time I use; top line in the middle panel of
Figure 13 – stars moving at 60 km s−1 to zero perihelion distance are
currently 1.2 pc away (and faster stars are currently more distant). Any
star at this distance with M > 18.1 will have m > 13.5 and so not be
observable.
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Fig. 13. The completeness function, C(tph, dph) (top panel). This shows
the probability of observing an encounter as a function of its perihel-
ion time and distance. It uses distributions of stellar properties and an
approximation of the TGAS selection function (see section 4.1) and is
mirror-symmetric about tph = 0. The values shown range between 0.05
and 0.57, which excludes tph = 0 and dph = 0 as formally the incom-
pleteness is undefined at these values. Cuts through this parallel to the
dph axis are shown in the middle panel for tph from 20 kyr to 5 Myr in
steps of 20 kyr. Cuts parallel to the tph axis (for positive tph) are shown
in the bottom panel for dph from 0.1–10 pc in steps of 0.1 pc.

(0.099 for dph < 2 pc). That is, if all TGAS stars had measured
radial velocities, we would expect to observe about 1 in 11 of the
encountering stars in this region (if the Galaxy really followed
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the model assumptions laid out above). This might seem a rather
large fraction, given that Figure 10(a) shows a much smaller
fraction of stars retained when the selection function is applied
to Pmod(r) (solid line) to achieve P∗exp(r). But P∗exp(r) shows the
observability of all stars, not just the encountering stars. A com-
pleteness correction based on the observability of all stars would
be incorrect, because it would “overcorrect” for all those stars
which won’t be close encounters anyway.

There is very little dependence of the completeness on dis-
tance, except at the smallest times, as can be seen in the middle
panel of Figure 13, which shows cuts through the completeness
at fixed times. At tph = 1 Myr, for example, the completeness
varies from 0.106 at dph = 0.1 pc to 0.102 at dph = 10 pc. There
is a strong dependence on time, in contrast, as can be seen in
the bottom panel of Figure 13. The lack of distance dependence
is because, for a given encounter time, those stars which en-
counter at 0.1 pc have much the same current spatial distribution
as those which encounter at 10 pc: They all come from a large
range of distance which is much larger than 10 pc (unless tph is
very small), so their average observability and thus completness
is much the same. Perihelion times varying between 0 and 5 Myr,
in contrast, correspond to populations of stars currently at very
different distances, for which the observability varies consider-
ably.

4.3. An estimate of the encounter rate

I now use the completeness function to correct the observed dis-
tribution of encounters in order to infer the intrinsic (“true”) dis-
tribution of encounters. From this we can compute the current
encounter rate out to some perihelion distance.

Let Fint(tph, dph) be the intrinsic distribution of encounters,
i.e. the number of encounters per unit perihelion time and peri-
helion distance with perihelion parameters (tph, dph). The corre-
sponding quantity for the observed encounters is Fobs(tph, dph).
These two quantities are the empirical equivalents of Fmod and
Fexp, respectively, introduced around equation 14. This equation
therefore tells us that

Fobs(tph, dph) = gC(tph, dph)Fint(tph, dph) (18)

where g is an extra factor accommodating the possibility that
the search for encounters did not include all the observed stars
(discussed below). Given this factor, the completeness func-
tion, and the observed distribution of encounters, we can derive
Fint(tph, dph). Integrating this over time and distance we infer the
intrinsic number of encounters.

To do this I first represent the observed encounter distribu-
tion, Fobs(tph, dph), as a continuous density. I compute this using
kernel density estimation (with a Gaussian kernel) on the sur-
rogates for all stars. (The surrogates are the data resamples in
the orbital integration – see item 5 in section 2). By applying
the density estimation to the surrogates – rather than, say, the
median of the perihelion parameter distribution – we account
for the uncertainties. When computing the density I only retain
unique stars (duplicates are removed at random). I also exclude
surrogates with vph > 300 km s−1, on the grounds that the model
does not include faster stars either. This also gets rid of objects
with the most spurious radial velocity measurements.

Figure 14 shows the resulting distribution. The density scale
has been defined such that the integral over some perihelion time
and distance region equals the (fractional) number of stars within
that region. This number can be a fraction because not all of the
surrogates for a star lie within the region.
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Fig. 14. The density of the observed encounters, Fobs(tph, dph), estimated
by kernel density estimation over the surrogates (orbital-integrated data
samples) with vph ≤ 300 km s−1, for all unique stars. The colour scale
gives the number of encounters per unit time and distance. The integral
over time and distance is the (fractional) number of encountering stars.

The completeness function describes what fraction of stars
we miss on account of the TGAS selection function. But it does
not reflect the fact that not all TGAS stars have radial velocities,
and so could not even be tested for being potential encounters.
This is accommodated by the factor7 g in equation 18. The total
number of stars in TGAS is 2 057 050 (Lindegren et al. 2016,
section 5.1). The number of stars in TGAS for which I have valid
radial velocities is 322 462, and this is approximately the number
of stars which I could potentially have searched for encounters.
Therefore, the fraction of stars in TGAS I effectively searched is
g = 322 462/2 057 050 = 0.157.

I now apply equation 18 to find Fint(tph, dph). Integrating this
over some region of tph and dph gives the inferred number of
encounters in that region. Dividing that by the time range of the
region gives the average encounter rate.

For the full region over which the completeness has been
computed, |tph| ≤ 5 Myr and dph ≤ 10 pc, the inferred encounter
rate is 2117±115 Myr−1. The quoted uncertainty reflects only the
Poisson uncertainty arising from the finite number of observed
encounters (it is the rate divided by the square root of the frac-
tional number of encounters). This rate is likely to be an underes-
timate, however, because we will miss encounters near to 10 pc
on account of the initial LMA-based selection (explained at the
end of section 2). Limiting the region to perihelion distances
within 5 pc we get 545 ± 59 Myr−1. This is 3.9 times smaller,
which follows almost exactly the quadratic dependence on the
number of encounters within a given distance predicted by the
encounter model (see section 4.2).

If I limit the region to 2 pc we get an encounter rate of 124±
30 Myr−1. However, this estimate is based primarily on just the

7 Describing this as a constant factor assumes that the selection of ra-
dial velocities is not a function of tph and dph. If fewer faint stars had
radial velocities, for example, this may harm this assumption. We might
expect missing faint stars to lower the completeness at larger tph, but
it’s not as simple as this: the apparently faint stars are at a range of dis-
tances, so will contribute to a range of tph. More distant stars are also
less likely a priori to encounter the Sun. Given the ill-defined selection
function of the combination of these radial velocity catalogues, any at-
tempt at a more sophisticated correction would probably do more harm
than good.
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13 stars with dmed
ph < 2 pc and vmed

ph < 300 km s−1, so has a larger
uncertainty. If I instead scale quadratically the result for 5 pc, I
get 87 ± 9 Myr−1, which I adopt instead as the rate inferred by
this study.

The inferred encounter rates for smaller time windows tend
to be higher. For dph ≤ 5 pc, the average rates for close encoun-
ters within 1, 2, 3, and 4 Myr of now are 844 ± 128, 816 ± 102,
725 ± 83, and 639 ± 70 Myr−1 respectively. These are consistent
within the quoted uncertainties, although these estimates are not
independent because encounters in the shorter time intervals are
also counted in the longer intervals.

4.4. Other published rates

Other authors have derived encounter rates using different data
sets or from Galaxy models. Using the Hipparcos catalogue and
a correction for incompleteness, García-Sánchez et al. (2001) de-
rived a value of 11.7 ± 1.3 Myr−1 within 1 pc (an average for the
past and future 10 Myr, it seems). Applying the quadratic scaling
with distance, this would correspond to 46.8 ± 5.2 Myr−1 within
2 pc, which is about half the size of my result. Their approach
to the incompleteness is very different: they compute a single
factor for the fraction of stars within 50 pc which Hipparcos did
not see (estimated as 1/5), even though many of their encounters
would have travelled from much larger distances. My correction,
in contrast, looks at the completeness as a function of encounter
time and distance, based on non-uniform density and velocity
distributions. The luminosity function they used in their correc-
tion (their Figure 13) does not include nearly as many faint stars
as mine (Figure 10c). This may explain their smaller inferred
encounter rate.

Martínez-Barbosa et al. (2017) used N-body simulations of
the Galaxy for three different scenarios – with orbital migration
from the inner disk, no significant migration, and with migra-
tion from the outer disk – to derive current encounter rates of
21, 39, and 63 Myr−1 within 1.94 pc, respectively. These are all
somewhat smaller than my inferred rate for the same distance.

4.5. Sensitivity to assumptions

My completeness model contains a number of simplifying as-
sumptions, so I look here briefly at their impact on the com-
pleteness function and the derived encounter rate.

The adopted distance distribution (equation 16, Figure 11a)
uses a length scale of L = 100 pc. If I double this, then the
model distribution Pmod(tph |dph) shown in the bottom left panel
of Figure 11 is stretched in time, because the bulk of the stars
are now further away and so take longer to reach perihelion. The
expected distribution (bottom right panel of Figure 11) stretches
in a similar way. The net result is a decrease in completeness, as
we would expect, because the stars are now more distant and
so less observable. The mean completeness for |tph| < 5 Myr
and dph < 5 pc is 0.078 (compared to 0.091 before). Using
this completeness function, the inferred encounter rate over the
past/future 5 Myr within 5 pc is 659 ± 71 Myr−1, compared to
545 Myr−1 computed earlier with L = 100 pc.

In the orignal model I assumed that the velocity distribution
of stars was as shown in Figure 11(b). I now scale this distribu-
tion in velocity by a factor of two, keeping the shape the same
(i.e. the mode shifts from 60 km s−1 to 120 km s−1). As the stars
are now moving much faster, we see relatively more encoun-
ters at closer times in the past/future (and likewise fewer at large
times), because their travel times to encounter are shorter. The

conditional distributions are compressed considerably compared
to the nominal case. The mean completeness for |tph| < 5 Myr
and dph < 5 pc is now decreased to 0.069, and the inferred en-
counter rate over this region is 782 ± 81 Myr−1, 1.4 times larger
than before. (Scaling the velocities by a factor of a half – so the
mode is 30 km s−1 rather than 60 km s−1 – lowers the encounter
rate by the same factor.)

In reality, TGAS does not have the sharp bright-magnitude
cut I use in the model (Figure 10d). I set this to G = 4.5 on the
ground that there is only one star brighter in TGAS. Modelling
the shape of the completeness at the bright end using very few
stars is difficult, so I test the sensitivity to this choice by shift-
ing the cut-off to G = 5.5 (375 TGAS stars are brighter than
this). Remodelling the completeness, I find that the inferred en-
counter rate increases by just 1%. This is an increase and not a
decrease because while the number of observed encounters stays
the same, P∗exp and therefore C are slightly smaller, thus increas-
ing Fint (see equations 15 and 18).

These tests indicate that while the incompleteness-corrected
encounter rate does depend on the assumed model parameters,
it is not overly sensitive. Of course, the model remains rather
unrealistic, not least the assumption of isotropic and independent
distance and velocity distributions. Changes to these could have
a more dramatic impact. On the other hand, the completeness
function depends not on the model directly, but only on how the
derived encounter distribution changes under the observational
selection function, which is a weaker dependence. Nonetheless,
for the deeper survey we expect in the second Gaia data release,
a more sophisticated model should be adopted.

5. Summary and conclusions

I have searched for close stellar encounters using a combination
of Gaia astrometry and several radial velocity catalogues. Can-
didates were identified from a list of 322 462 stars by assuming
that stars travel on straight lines relative to the Sun, and identi-
fying those which come within 10 pc. The orbits of these were
then integrated in a Galactic potential to compute more precise
perihelion parameters. This included an integration of resampled
data (“surrogates”) in order to determine the (asymmetric) distri-
bution over the perihelion time, distance, and speed for each star.
These distributions are summarized with the 5%, 50% (median),
and 95% percentiles (Table 3).

16 stars were found to have median perihelion distances
less than 2 pc (see Table 2). This is fewer than I found in my
Hipparcos-based study (paper 1), and fewer than expected given
the much larger size of TGAS (it has 17 times more stars than
Hipparcos, although due to the limited availability of radial ve-
locities it is effectively only four times larger). This is in part be-
cause TGAS includes fewer bright stars (only one brighter than
G = 4.5 mag), but also because I have excluded stars with large
radial velocity uncertainties. Note that some of the encounters
listed are almost certainly spurious due, for example, to implau-
sibly large radial velocity measurements.

The closest encounter found is Gl 710, known for some time
to come close to the Sun. TGAS determines a smaller proper
motion than Hipparcos for this star, leading to a much smaller
perihelion distance: now just 16 000 AU (90% CI 10 000–
21 000 AU), making Gl 710 the closest approaching star known.
This brings it within the Oort cloud, and although its mass is low,
so is its velocity, so its perturbing influence is likely to be much
higher than more massive but more distant encounters (Figure
6).
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I then set up simple models for the stellar spatial, velocity,
and luminosity distributions and used these to compute the peri-
helion distribution we would observe in the absence of observa-
tional selection effects (left column of Figure 11). This shows,
for example, a decrease in the number of encounters at larger
absolute perihelion times. This is a direct (and possibly counter-
intuitive) consequence of the adopted spatial and velocity distri-
butions. I then determined how this distribution would change
under the influence of the TGAS selection function (right col-
umn of Figure 11). The ratio of this expected distribution to the
model distribution gives the completeness function (Figure 13).
This tells that us the probability that TGAS observes a star which
encounters within 2 pc within 5 Myr of now is on average 0.09
(and 0.20 within 1 Myr from now). This function shows very lit-
tle change in the completeness out to 10 pc perihelion distance,
but a strong drop off with perihelion time over ±5 Myr. This is
also seen in the distribution of observed encounters. I emphasize
that the completeness model is based on very simple assump-
tions, in particular isotropic spatial and homogeneous velocity
distributions, and a selection function which only depends on
magnitude. A more complex model would bring few benefits for
these data, because the selection functions for TGAS and the RV
catalogues would still be poorly defined. The goal in this paper
was to explore the consequences of a simple model; this will
help the interpretation of more complex models (to be devel-
oped for later Gaia data releases). Yet even my simple model is
an improvement on earlier attempts at deriving encounter rates,
which have either ignored incompleteness or have assumed uni-
form distributions. Moreover, this is the first study to look at the
completeness in the parameter space of interest, which is where
we actually need it.

Combining the completeness function with the number of
observed encounters (excluding those with |vr | > 300 km s−1),
and taking into account that not all TGAS stars had radial
velocities, I estimated the intrinsic encounter rate. Averaged
over the past/future 5 Myr this is 545 ± 59 Myr−1 for encoun-
ters within 5 pc. My model predicts that this scales quadrat-
ically with the distance limit. This is confirmed by the data,
as the incompleteness-corrected rate out to twice this distance
is 2117 ± 115 Myr−1, a factor 3.9 ± 0.4 larger. Thus the im-
plied encounter rate within 1 pc (scaling from the 5 pc result)
is 21.8 ± 2.4 Myr−1. The quoted uncertainties reflect only Pois-
son uncertainties in the detected encounters; uncertainties due to
model approximations are probably much larger. The rates given
are for all types of stars, as defined by the luminosity distribution
in my model (Figure 10c). As the true luminosity distribution is
poorly sampled by TGAS, this is one source of additional un-
certainty in my derived rates. In particular, TGAS omits more
bright stars than my simple selection function accommodates,
which would lead to my rates being slightly underestimated.

Some stars which are not both in TGAS and my radial veloc-
ity catalogues are additionally known to be close encounters (see
references in the introduction). I have not included these in my
analysis because cobbling together encounters found in different
ways from different surveys makes modelling the incomplete-
ness nearly impossible. The goal of the present paper is not to
list all known close encounters, but rather to make a step toward
a more complete modelling with later Gaia data releases.

6. Moving on: future Gaia data releases

The next Gaia data release (GDR2, planned for April 2018)
should provide more precise parallaxes and proper motions for
of order a billion stars down to G ' 21 and up to G ' 4. This will

be vital for increasing the completeness of encounter searches, in
particular to encounter times further in the past/future than a few
Myr. Using my model together with an estimate of the GDR2
magnitude selection function, I compute the mean completeness
over the range dph < 2 pc and |tph| < 5 Myr to be 0.75, eight
times higher than TGAS. The completeness model in the present
paper is too simplistic for GDR2, however, because GDR2 will
include many more-distant stars. It should also have a better-
defined selection function (among other things, it will become
independent of Tycho.) It will then be appropriate to construct a
three-dimensional spatial model, as well as a three-dimensional
velocity model with spatial dependence, in order to better model
the Galaxy (different components, disk rotation, etc.).

The number of encounters which can be found in GDR2
will be limited by the availability of radial velocities. Although
GDR2 will include estimates of radial velocities for a few mil-
lion of the brightest stars (to a precision of a few km/s) – from the
calcium triplet spectra observed by the satellite’s high resolution
spectrograph (Gaia Collaboration et al. 2016b) – this remains
a small fraction of stars with astrometry. Even upcoming large-
scale spectroscopic surveys will obtain “only” tens of millions of
spectra. We are now entering a period in which the ability to find
encounters is limited not by the availability of astrometry, but
by the availability of radial velocities. Furthermore, the Gaia as-
trometric accuracy is so good that the corresponding transverse
velocity accuracy for encounter candidates will far exceed the
precision of large-scale radial velocity surveys. Using the offi-
cial predictions of the end-of-5-year-mission Gaia accuracy8, a
G-type dwarf at a distance of 200 pc moving with a transverse
velocity of 5 km s−1 will have its transverse velocity determined
to an accuracy of 8 m s−1.

The following (third) Gaia data release will also include es-
timates of stellar masses and radii, derived by the DPAC using
the low resolution Gaia spectroscopy, magnitude, parallax, and
stellar models (Bailer-Jones et al. 2013). We will then be able to
estimate systematically actual impulses (equation 1), and also to
correct the measured radial velocities for the gravitational red-
shift, which is of order 0.5–1.0 km s−1 (Pasquini et al. 2011).
This data release should also include solutions for astrometric
and spectroscopic binaries (Pourbaix 2011), thereby permitting
a better computation of flight paths for such systems.
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Appendix A: Gaia archive query

Below is the ADQL query used to select stars from the TGAS
table which have perihelion distances less than 10 pc accord-
ing to the linear motion approximation, assuming they all have
|vr | = 750 km s−1. The TGAS table does not list Tycho IDs when
Hipparcos IDs are present, so I use a join to add these missing
Tycho IDs.

select tgas.tycho2_id, tycho2.id, tgas.hip,
tgas.source_id, tgas.phot_g_mean_mag, tgas.ra,
tgas.dec, tgas.parallax, tgas.pmra, tgas.pmdec,
tgas.ra_error, tgas.dec_error, tgas.parallax_error,
tgas.pmra_error, tgas.pmdec_error, tgas.ra_dec_corr,
tgas.ra_parallax_corr, tgas.ra_pmra_corr,
tgas.ra_pmdec_corr, tgas.dec_parallax_corr,
tgas.dec_pmra_corr, tgas.dec_pmdec_corr,
tgas.parallax_pmra_corr, tgas.parallax_pmdec_corr,
tgas.pmra_pmdec_corr
from gaiadr1.tgas_source as tgas
left outer join public.tycho2 as tycho2
on tgas.hip = tycho2.hip
where( ( 1000*4.74047*sqrt(power(tgas.pmra,2) +
power(tgas.pmdec,2))/power(tgas.parallax,2) ) /
( sqrt( (power(tgas.pmra,2) + power(tgas.pmdec,2)) *
power(4.74047/tgas.parallax,2) + power(750,2) ) )
) < 10

Appendix B: The completeness function

Let Fmod(tph, dph) be the model-predicted number of encounters per unit
perihelion time and perihelion distance at (tph, dph), and let Fexp(tph, dph)
be the corresponding expected quantity, i.e. after modulation by the ob-
servational selection function. The completeness function, C(tph, dph),
specifies the fraction of objects observed at a given (tph, dph), and is de-
fined by

Fexp(tph, dph) = C(tph, dph)Fmod(tph, dph) . (B.1)

Clearly 0 ≤ C(tph, dph) ≤ 1. Pmod(tph, dph) is the normalized PDF of
Fmod(tph, dph), i.e.

Pmod(tph, dph) =
Fmod(tph, dph)!

Fmod(t′ph, d
′
ph) dt′phdd′ph

=
Fmod(tph, dph)

Nmod
(B.2)

where the integral is over all perihelion times and distances, which (con-
ceptually) gives the total number of encounters in the model, Nmod. (This
is only a conceptual definition for Nmod, because my model is continu-
ous.) P∗exp(tph, dph) relates to Fexp(tph, dph) in a similar way, but here we
must include an additional (dimensionless) factor, b, to accommodate
the fact that P∗exp(tph, dph) is not normalized,

P∗exp(tph, dph) =
b Fexp(tph, dph)!

Fexp(t′ph, d
′
ph) dt′phdd′ph

=
b Fexp(tph, dph)

Nexp
(B.3)

which also defines Nexp. Integrating both sides of this equation over all
perihelion times and distances shows us that

b =

"
P∗exp(t′ph, d

′
ph) dt′phdd′ph . (B.4)

By construction P∗exp(tph, dph) is the reduction in Pmod(tph, dph) under the
influence of the selection function, so P∗exp(tph, dph) ≤ Pmod(tph, dph) ev-
erywhere. Hence b, which therefore lies between 0 and 1, is the fraction
of stars retained following application of the selection function, which
is Nexp/Nmod.

Substituting Fmod(tph, dph) from equation B.2 and Fexp(tph, dph) from
B.3 into equation B.1 gives

C(tph, dph) =
P∗exp(tph, dph)

Pmod(tph, dph)
Nexp

Nmod

1
b
. (B.5)

But b = Nexp/Nmod, so

C(tph, dph) =
P∗exp(tph, dph)

Pmod(tph, dph)
. (B.6)
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