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ABSTRACT

Should we expect most habitable planets to share the Earth’s marbled appearance?
For a planetary surface to boast extensive areas of both land and water, a delicate
balance must be struck between the volume of water it retains and the capacity of its
perturbations. These two quantities may show substantial variability across the full
spectrum of water-bearing worlds. This would suggest that, barring strong feedback
effects, most surfaces are heavily dominated by either water or land. Why is the Earth
so finely poised? To address this question we construct a simple model for the selection
bias that would arise within an ensemble of surface conditions. Based on the Earth’s
ocean coverage of 71%, we find substantial evidence (Bayes factor K ≃ 6) supporting
the hypothesis that anthropic selection effects are at work. Furthermore, due to the
Earth’s proximity to the waterworld limit, this model predicts that most habitable
planets are dominated by oceans spanning over 90% of their surface area (95% credible
interval). This scenario, in which the Earth has a much greater land area than most
habitable planets, is consistent with results from numerical simulations and could help
explain the apparently low-mass transition in the mass-radius relation.

Key words: planets and satellites: composition – planets and satellites: oceans –
astrobiology – methods: statistical.

1 INTRODUCTION

The methane seas of Titan are the only exposed bodies of liq-
uid known to exist beyond our planet. They differ markedly
from the Earth’s oceans, not only in terms of chemistry,
but also in their modest expanse. As a result, Titan is a
world whose surface remains heavily dominated by dry land.
Remarkably, Dermott & Sagan (1995) were able to deduce
this fundamental feature long before detailed surface obser-
vations became available. They argued against the presence
of extended oceans on the basis that Titan’s orbit would
have been circularised by the dissipative motions of their
tides. This left only one viable hypothesis: a surface where
the liquid was confined to sparse, disconnected pockets. In
due course, Cassini’s radar was able to construct a high res-
olution map of the surface, by piercing the haze of Saturn’s
largest moon. These observations vindicated the theoretical
predictions in spectacular fashion (Stofan et al. 2007). The
liquid hydrocarbons on Titan appear to account for little
more than one per cent of the total surface area.

We are currently faced with the even more daunting
task of characterising the surfaces of habitable exoplanets.
But one subtlety which appears to have been overlooked is
that the prediction of Dermott & Sagan (1995) could have
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been made even without the orbital data. On a purely statis-
tical basis, and in the absence of correlations, one expects the
division of liquid and solid surface areas to be highly asym-

metric. This is because the volume of liquid need not match
the capacity of perturbations in the solid. The two quantities
often differ by several orders of magnitude. If it is the liq-
uid which dominates, the solid surface becomes completely
immersed. Enceladus and Europa offer exemplary cases of
this phenomenon. Beneath each of their icy crusts, a single
ocean completely envelops a solid core (Kivelson et al. 2000;
Waite Jr et al. 2009). If, on the other hand, the liquid’s vol-
ume is subdominant, it settles into small disconnected re-
gions, as was found to be the case on the surface of Titan.

Does this trend of asymmetric surface partitions extend
to habitable exoplanets? And if so, why do we observe the
Earth’s water and land areas to be so finely balanced, dif-
fering in extent by only a factor of two? These are the core
questions we shall aim to address in this work.

Simulations of terrestrial planet formation provide us
with the first clues for solving these puzzles. Raymond et al.
(2007) explored the viability of delivering water to habitable
planets from icy planetesimals which originate beyond the
snow line. The chaotic nature of this process ensures habit-
able planets garner a broad spectrum of water compositions.
This variety reinforces our expectation that their surfaces
tend to be dominated by either solid or liquid. However not
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Figure 1. The oceanic fine-tuning problem. Left: The ocean coverage as a function of the surface water volume, normalised in terms of
the capacity of surface perturbations. The solid line describes any solid surface with a Gaussian hypsometry. This will serve as our model
for the statistical average across all habitable worlds. The dot-dashed line depicts the effect of adopting the shape of the Earth’s elevation
profile (Eakins & Sharman 2012), while the dotted line (barely distinguishable) corrects for the isostatic depression of the seabed. The
thick dashed line shows the response for the elevation profile of Mars. The thin vertical dashed line demonstrates that the Earth’s value
of S⊕ ≃ 4 is precariously close to the waterworld limit. Right: Three different models of the habitable land area, expressed as a fraction
of the total surface area. The dotted, dashed and solid lines correspond to values of α = 1

5
,1,5 respectively, and the habitable area is

defined by equation (7). These curves are generated using a Gaussian hypsometry, as depicted in the left hand panel.

all water will reside on a planet’s surface. Some will remain
locked in the mantle, while a further portion will be lost
through the upper atmosphere. Indeed a number of processes
can influence the depths of the oceans (Schubert & Reymer
1985; McGovern & Schubert 1989; Kasting & Holm 1992;
Holm 1996; Abbot et al. 2012; Cowan & Abbot 2014). If suf-
ficiently strong feedback mechanisms are at work, it may be
possible to ensure that the depths of oceans match the ampli-
tude of perturbations in the crust. In which case, we ought
to expect many habitable planets to resemble the Earth’s
division of land and sea. However it remains unclear if any
are strong enough to correct for variations in water volume
of more than one order of magnitude. Alternatively, hab-
itable planets display a broad distribution of surface con-
ditions, and for the case of the Earth we just ‘got lucky’
(Cowan & Abbot 2014). But, given that trillions of dice have
been rolled, do we require any luck at all? Perhaps the dice
were weighted in favour of a balanced surface.

The earliest applications of anthropic selection were
of a binary nature, in that they addressed the ques-
tion of whether a particular set of conditions forbade our
existence (Carter 1974; Carter & McCrea 1983; Barrow
1986; Weinberg 1987). Later, more refined studies invoked
Bayesian statistics to deliver quantitative assessments of
how our cosmic environment may be biassed by our exis-
tence (Efstathiou 1995; Garriga et al. 2004; Tegmark et al.
2006; Peacock 2007; Simpson 2016b; Simpson 2016c). Un-
til recently, the application of Bayesian anthropic reasoning
was restricted to the cosmological realm. The hypothetical
ensemble of cosmic conditions has a number of theoretical
motivations, yet any experimental evidence lies tantalisingly
beyond our grasp. No such limitations exist for the ensemble
of habitable planets. Simpson (2016c) used a simple popu-
lation model to argue that our planet is likely to be towards

the large end of the spectrum,1 inferring the radius R of a
given planet with intelligent life to be R < 1.2R⊕ (95% con-
fidence bound). Empirical analyses by Rogers (2015) and
Chen & Kipping (2016) appear to support these findings,
with the latter study concluding that the Terran-Neptunian
divide occurs at approximately 1.2R⊕. Whether its the mul-
tiverse, extra-terrestrial life, or even the longevity of our
species (Gott 1993; Simpson 2016a), putting this predictive
framework to the test is rarely practical. Yet the characteri-
sation of habitable exoplanets provides a remarkable oppor-
tunity to do just that.

In this work we turn our attention to the selection ef-
fect involving a planet’s ocean coverage. Our understanding
of the development of life may be far from complete, but
it is not so dire that we cannot drastically improve on the
implicit approximation that all habitable planets have an
equal chance of hosting intelligent life. Should we consider
planets with different land-ocean divides to have an equal
chance of producing an intelligent species such as Homo

Sapiens? Few would doubt whether the Earth’s surface con-
figuration is better suited to supporting a diverse biosphere
than Tatooine. It is this small piece of knowledge that can
be exploited to update our prior belief for the surface con-
ditions among the ensemble of habitable planets.

In §2 we explore the fine-tuning problem associated with
the Earth’s oceans, and review two approaches for tackling
the problem: feedback processes and observational selection
effects. In §3 we quantify the relative probability of observing
a host planet based on its habitable area. The model we use
for the ensemble of surface conditions is defined in §4. Our

1 See also the pedagogical animation by MinutePhysics:
https://youtu.be/KRGca_Ya6OM
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main results are presented in §5, before concluding with a
discussion in §6.

2 THE OCEANIC FINE-TUNING PROBLEM

2.1 Basin Saturation

To facilitate a comparison of surface conditions across the
gamut of habitable worlds, it is instructive to introduce the
basin saturation S. This dimensionless quantity is defined as
the ratio of the surface water volume Vw to the capacity of
the basin Vb,

S ≡ Vw

Vb
. (1)

Here we shall take the basin capacity Vb to be the volume
of liquid required to cover half of the solid surface.2 By con-
struction, a sub-saturated world (S < 1) will have a surface
dominated by land, while a super-saturated world (S > 1)
will be mostly covered by water. The Earth’s saturation
value is S⊕ ≃ 4. One could generalise this expression beyond
water, to encompass any liquid. For example, Titan’s lakes
have an estimated volume of around 9,000km3, correspond-
ing to a basin saturation value of approximately 10−4.

Throughout this work we shall use the term habitable
planet to refer to those worlds which possess a permanent
body of surface water, such that S > 0. The full ensemble
of habitable planets will span a distribution that we shall
denote p(S). Unless p(S) has both a mean close to unity (µS ∼
1) and a small standard deviation (σS . 1) then most planets
will have imbalanced surfaces, dominated by either land or
ocean. The oceanic fine-tuning problem may therefore be
stated as follows: Why should we find ourselves on a planet
with a saturation value S of the order unity, as opposed to
S ≫ 1 or S ≪ 1?

There are three viable hypotheses:

(i) H0: Luck. The distribution of saturation values p(S) is
not localised at S ∼ 1, yet by chance we arrived at the point
S⊕ ∼ 1.

(ii) H1: Selection. The distribution of saturation values
p(S) is not localised at S ∼ 1, but land-based observers such
as humans inhabit an inherently biased sample of habitable
planets, such that the conditional distribution p(S|H) is lo-
calised close to S ∼ 1. This scenario is explored in Section
2.2.

(iii) H2: Feedback. The distribution p(S) is localised close
to S ∼ 1 due to feedback mechanisms. This hypothesis is
discussed in Section 2.3.

Why might the terrestrial value, S⊕, be prone to se-
lection bias? Consider the relationship between the basin
saturation value S and the fractional oceanic area fw. This
relationship is illustrated by the solid line in the left hand
panel of Figure 1, for the case of a Gaussian elevation pro-
file. The dot-dashed and dashed lines utilise the elevation
profiles of the Earth and Mars respectively. Meanwhile the

2 Note that we could equally have defined Vb in terms of the vol-
ume required to cover 100% of the area. However this quantity is
more challenging to model as it is highly sensitive to the extreme
tail of the elevation profile.

shaded region (S > 10) denotes the regime in which over
99.7% (3σ) of a Gaussian surface is immersed. This fraction
will change slightly for different elevation profiles, but only
the most contrived shapes would retain a substantial land
mass. (For example, if we tried to carve out more room for
the Earth’s oceans, by excavating 2/3rds of the continen-
tal land mass and replacing it with water, this would raise
our basin saturation value from 4 to 6). The Earth’s satu-
ration value, as represented by a vertical dashed line, sits
close to the threshold at which planets transition to water
worlds. Is it just a coincidence that we are located close to
a critical point, beyond which our existence would not have
been possible? Coincidences often arouse our suspicion, but
this is an intuitive response, one that is difficult to quantify.
Fortunately Bayesian statistics offer a means to analyse and
quantify the source of this distrust (see e.g. MacKay 2003).

Note that for any Gaussian elevation profile, the ex-
pression (1) for the basin saturation has the generic solution

S =

∫ z
−∞

1
2 +

1
2 erf(x)dx

∫ 0
−∞

1
2 +

1
2 erf(x)dx

= e−z2

+ z
√

π erf(z) , (2)

where z ≡
√

2erf−1(1−2 fw). Here erf denotes the error func-
tion, while the parameter z represents the sea level’s dis-
placement from the median elevation.

Both Vw and Vb, and therefore S, will exhibit some time-
dependence over geological timescales. To draw a fair com-
parison across different planets, we must therefore specify a
fixed reference point. Here we shall concern ourselves with
their values at an age of 4Gyr, the approximate time re-
quired for the emergence of land-based and intelligent life
on Earth. Therefore Mars, for example, would be consid-
ered to have S = 0, despite its possible early period of hab-
itability. Note that by imposing this age restriction we ef-
fectively exclude planets hosted by higher mass stars, M &

1.4M⊙. By this time these stars will have evolved off the
main sequence, posing a serious challenge for habitability
(Ramirez & Kaltenegger 2016). Planets within lower mass
M-dwarf systems are included, unless the emergence of com-
plex life has been compromised by their heightened stellar
activity.

With this definition, we expect to find a bimodal distri-
bution for S. Those planets which lose water on a timescale
much less than 4Gyr will be deemed uninhabitable, S = 0,
while those capable of retaining water shall form a broader
distribution p(S).

2.2 The luck of natural selection

As is evident from Figure 1, the Earth appears precariously
close to the waterworld limit. This marks the transition to a
regime where the existence of our species would no longer be
viable. Such proximity to a critical limit is exactly what one
expects to find, under one condition: the bulk of the prob-
ability distribution lies beyond the critical point. In other
words, if we cannot exist on a waterworld, yet most habit-
able planets are waterworlds, then we should expect to live
on a planet close to the waterworld limit. This is the same
line of reasoning used by Weinberg (1987) to predict the
value of the cosmological constant.

Given how closely the cosmic argument parallels our

MNRAS 000, 1–15 (0000)
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Table 1. Characteristics of known solid surfaces.

Radius RMS Elevation Basin Capacity Basin Saturation

R(km) σh(km) Vb(106 km3) S

Moon 1,737 1.95 59 -
Mercury 2,440 1.09 65 -
Titan 2,575 0.13 8 10−4

Mars 3,390 2.98 343 -
Venus 6,052 0.68 248 -
Earth 6,371 2.51 1,021 4

planetary one, it is worth revisiting the logical steps fol-
lowed by Weinberg (1987). There may be an ensemble of
cosmic conditions, and this ensemble defines a probability
distribution for the cosmological constant, p(Λ). Values of
the cosmological constant greater than some critical value
Λc ∼ 10−120 prohibit the formation of galaxies. If most val-
ues of the cosmological constant are too large to permit life,
then the selection effect associated with our existence will
truncate most of the probability distribution p(Λ), such that
p(Λ>Λc)= 0. Despite the very large uncertainty in the func-
tional form of p(Λ), a single sample ought to lie close to the
point of truncation, provided the tail of the distribution is
smooth and featureless. It was this statistical insight that
led Weinberg to conclude that the value of the cosmological
constant in our Universe is within an order of magnitude
of the critical value required to obstruct galaxy formation.
Empirical verification arrived little more than a decade later
(Riess et al. 1998; Perlmutter et al. 1999).

Returning to the case of planetary oceans, we are faced
with a somewhat analogous situation. In place of Λ, we now
consider the influence of a planet’s ocean coverage. Given
that our existence would not have been tenable on water-
wolds, this imposes an upper bound given by Sc ≃ 10. In
which case, the selection effect truncates the full p(S) dis-
tribution, such that p(S > Sc) = 0. If the bulk of habitable
planets lie beyond the threshold - i.e. they are waterworlds -
then we should fully expect to find that our home planet lies
in the range 1 < S⊕ < 10. Conversely if the bulk of habitable
planets fall below the threshold, such that waterworlds are
outnumbered, then we have no immediate expectation that
our planet should lie in close proximity to the threshold.

There is an important difference between the cosmologi-
cal and planetary inferences. For the case of the cosmological
constant, the hypothetical ensemble was used to predict the
local value. For the case of planetary oceans, the information
passes in the opposite direction: it is our local value which
is being used to predict the nature of the ensemble. That is
the core concept which underlies this work.

For a further example on the importance of selection
effects, we turn to biology. Early civilisations assumed a
creator was responsible for all of the highly complex de-
signs exhibited by living creatures. These designs, it turned
out, could be explained by a mechanism of natural selection
(Matthew 1831; Darwin 1872). This went on to become one
of the most famous and widely accepted results in science.

Evolution determined which genes we call our own, but
what determined which planet we call home? If one wishes to
avoid invoking a creator, then one must accept that a higher
tier of natural selection took place - on a truly cosmic scale.
Unlike the animal kingdom, where genetic material under-
goes sequential generations, planetary selection is a shotgun

approach. Only a single ‘generation’ exists. But the plane-
tary population is vast, with their broad ensemble of charac-
teristics mimicking the range of genetic mutations. The end
result is highly analogous. Our genes, and our planet, are
those which have proven to be highly successful at produc-
ing life. In biology, we cannot see those genetic mutations
which are associated with sterility. In the same way, no indi-
vidual in the Universe evolved on a planet whose character-
istics are associated with sterility. From this deep selection
process grows the appearance of design.

The apparent fine-tuning of the Earth’s orbit - that it
is neither too close to the Sun for its oceans to boil, nor too
remote for them to freeze - is readily attributed to the im-
portance of liquid water in the development and sustenance
of life. Could the Earth’s ocean coverage be a further exam-
ple of illusory design? The land-ocean divide is likely to have
a major impact on the probability of forming an intelligent
land-based species such as our own. Planets with only small
areas of exposed land will have a much more limited range
of land-based species, and this prospect vanishes altogether
in the case of total ocean domination. Conversely, consider
a planet identical to the Earth, except it has only sufficient
surface water to fill the Mariana Trench. It is still techni-
cally classified as habitable, but would it be as likely as the
Earth to produce a species such as ourselves? There would
only be a tiny area of habitable land, while the remainder is
arid desert.

Establishing a selection process based on land-based
species does not discount the plausibility of water-based ob-
servers. There may be a number of water-based and land
based observers, but a priori it is extremely unlikely that
these two numbers are a similar order of magnitude. And
since we find ourselves to be land-based observers, it is highly
probable that we are vastly more numerous than any water-
based counterparts.

2.3 Feedback Mechanisms

If most habitable planets possess an approximately even di-
vide between land and oceans, despite a variety of initial
conditions at the time of their formation, then some pro-
cess or combination of processes must act to equilibrate the
ocean and basin volumes. Here we briefly review some of the
processes which are capable of relating these quantities.

Isostatic Equilibrium: To a certain extent, the oceans
make room for themselves by exploiting their own weight.
Deeper, heavier oceans impart a higher pressure on the
seabed, which pushes the crust lower into the mantle. The
magnitude of this effect is proportional to the water-to-
mantle density ratio, which in the case of the Earth is ap-
proximately one third. So if the Earth’s oceans were to sud-

MNRAS 000, 1–15 (0000)
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denly vanish, seabeds would rise by an average of one kilo-
metre. The influence of this feedback mechanism is illus-
trated in the left hand panel of Figure 1. The solid line shows
how the fractional ocean coverage would evolve for different
quantities of surface water, when fixing the Earth’s elevation
profile. The dotted line shows the corrected curve, taking
into account the effect of isostasy. The two lines are only
distinguishable within a narrow regime, where the oceans
are a comparable depth to the continents. Isostacy therefore
cannot help make substantial corrections to the land-ocean
divide.

Deep Water Cycle: Water is recycled between the
oceans and the crust: it is emitted at mid-ocean ridges,
and returned via the subduction of tectonic plates. What
is less well understood is the extent to which water is trans-
ported deeper into the mantle. Kasting & Holm (1992) pro-
posed that an exchange of water between the crust and man-
tle could act as a buffer, preventing the oceans from be-
coming much shallower than their current depths (see also
Hirschmann 2006). Cowan & Abbot (2014) present a model
which accounts for the stronger surface gravity on super
earths, which suggests larger terrestrial planets could main-
tain an exposure of land. While these processes certainly
have the potential to provide significant feedback effects,
the capacity of the Earth’s mantle is thought be within a
factor of ten of the oceans (Inoue et al. 2010). It therefore
cannot correct for order-of-magnitude fluctuations in water
composition.

Self Arrest: If large excesses of water aren’t stored in
the mantle, the alternative disposal route is via the upper
atmosphere. Abbot et al. (2012) propose that some water-
dominated planets may initiate a ‘moist greenhouse’ phase,
which endures until they have lost sufficient water to expose
continents. At this point, CO2 is sequestered via silicate
weathering, thereby bringing the climate under control. This
model has the appealing property that an approximately
even land-ocean divide will serve to maximise the weath-
ering rate, as a balance of exposed land and precipitation
is required. The climactic impact of a high CO2 concentra-
tion has been explored by Kasting & Ackerman (1986) and
more recently Ramirez et al. (2014), who demonstrate that
the Earth’s atmosphere is likely to be stable against a run-
away greenhouse effect, potentially allowing for a controlled
release of excess water. However a consensus on the matter
has yet to be reached. Wordsworth & Pierrehumbert (2013)
argue that atmospheric cooling effects may act to limit the
escape of H2O in most cases. They conclude that significant
water loss through the upper atmosphere may only occur
under special conditions.

Erosion & Deposition: One of the more distinctive fea-
tures seen in the left panel of Figure 1 is the sharp drop in
land area associated with a modest rise in the current sea
level. This feature has been associated with the processes of
erosion and deposition (Rowley 2013). This reduces the am-
plitude of perturbations, and leads to a build up of material
close to sea level. The extent to which it can influence area
coverage is unclear. As with isostacy, its efficacy is limited
to the regime where a balance between land and ocean areas
is already in place.

In summary, while each of the above mechanisms con-
tribute to the complex relationship between elevation and
the volume of surface water, it remains unclear that they

Figure 2. A schematic diagram of the nested hierarchy of planets
based on their biological status. Progressively deeper subsets are

associated with environments which are increasingly well suited
to nurturing the development of living organisms.

are strong enough to equilibrate the diverse conditions of
habitable planets. Aside from variability in their water com-
position, planets will also display variable crust composi-
tions, a range of surface gravities, and differing degrees of
tectonic activity, all of which will contribute to a broad va-
riety of elevation profiles. That being the case, in this work
we shall focus on the prospect that habitable planets display
a broad range of surface water-to-basin volume ratios, such
that σS/S is of the order unity.

3 TERRESTRIAL SELECTION EFFECTS

How can the terrestrial value of some parameter, θ⊕, be used
to inform us of the full ensemble of planets in the Universe,
p(θ )? For an unbiased sample, then θ⊕ represents an unbi-
ased estimator of the population mean. However the strin-
gent conditions required for intelligent life to evolve on a
planet are likely to impose a bias on θ⊕. In order to quan-
tify this effect, we turn to Bayes’ Theorem

p⊕(θ ) ∝ p(θ )p(O|θ ) , (3)

Here p(θ ) denotes the probability distribution of θ across
all planets, while p⊕(θ )≡ p(θ |O) denotes the probability of
an observer’s host planet having a parameter θ . Meanwhile
p(O|θ ) is the term responsible for inducing a selection effect.
It is often neglected or forgotten because it can be challeng-
ing to estimate, yet it is categorically incorrect to do so
(Tegmark et al. 2006). Even the most innocuous of parame-
ters, such as the proportion of Argon in the atmosphere, are
not immune from this selection bias. If it is correlated with
any variable that influences the formation or development of
life, such as the abundance of water or hydrocarbons, then a
selection bias will arise. Therefore, in principle at least, the
observed value of almost any of the Earth’s features could
lie in the far extremities of the full distribution of habitable
planets.

MNRAS 000, 1–15 (0000)



6 F. Simpson

3.1 Planetary Fecundity

A planet’s fractional ocean coverage fw has a major influ-
ence on the area available for land-based species to evolve
and thrive, and therefore it is likely to play a significant
role in the emergence of intelligent species. In this section
we shall therefore aim to model the selection effect associ-
ated with a planet’s habitable land area H. This necessitates
a statistical description for the evolution of intelligent life.
This may seem like a hopeless endeavour, due to the vast
uncertainty in the amplitude of the probabilities involved.
However, we are only interested in the selection bias, so the
overall normalisation is irrelevant. Selection effects are only
sensitive to relative changes, not how rare or abundant life
is on the whole.

Figure 2 depicts the nested sequence of selection pro-
cesses that must be disentangled if we are to identify those
planets which are likely to harbour life. Each set holds
its own biased distribution of parameters p(θ ), and these
distinguishing features are helpful in the search for extra-
terrestrial life. The relationship between the two outermost
sets defines the study of habitability. In other words, what
characteristics must a world possess for it to be habitable? In
this work we shall focus on the link between the innermost
set (observers) to the middle set (primitive life). This defines
a quantity we shall refer to as the fecundity. It tells us what
life-bearing worlds require in order to produce sentient indi-
viduals. This relationship also informs us how we should ex-
pect our planet to differ from the bulk of life-bearing worlds.
This can be formalised using a variant of equation (3)

p⊕(θ ) ∝ pL(θ )F(θ ) , (4)

where pL(θ ) is the distribution of θ among all life-bearing
planets, and F(θ )≡ p(O|θ ,L) is the fecundity. To emphasise
the important distinction between fecundity and habitabil-
ity, consider the case of Enceladus. Its sub-surface oceans
are widely considered to be a promising place to search for
microbial life. But no-one is under any pretence that intel-
ligent life forms could be thriving in such a confined and
energy-scarce environment. It may be habitable, but it is
lacking in fecundity.

In order to estimate a planet’s fecundity, it is helpful to
decompose it into two separate components

F(θ ) = fi(θ )N̄i(θ ) , (5)

where fi(θ ) is the proportion of life-bearing worlds upon
which intelligent life evolves, and N̄i(θ ) is the mean num-
ber of observers produced by life-bearing planets with pa-
rameter θ . Note that the normalisation of F(θ ) is irrele-
vant, only the manner in which it evolves with θ will influ-
ence (4). The formalism above is valid when adopting either
the self-sampling assumption (Bostrom 2002) or the self-
indication assumption (Bostrom & Ćirković 2003), because
we are working within a local ensemble.

3.2 Fecundity of the Habitable Land Area

In principle this formalism can be applied to any planetary
parameter. In this work we shall focus on the habitable land
area, H. We model the emergence of an intelligent species
within a given area of habitable land as a rare stochastic

event. Larger areas of habitable land permit a greater abun-
dance and diversity of organisms to explore the evolutionary
landscape. There is therefore a greater opportunity for one
species to undergo a period of prolonged encephalisation,
and ultimately form an intelligent species. This model sug-
gests that the evolution factor from equation (5) exhibits a
linear scaling of the form fi(H) ∝ H.

Once an intelligent species has become established, we
assume it spreads to occupy the available habitable land
area. Therefore the mean number of individuals is also likely
to scale in proportion with the habitable land area, yield-
ing Ni(H) ∝ H. The reason for its inclusion here is that any
given individual (such as yourself) is more likely to reside on
a more populous planet. This may be an unsettling state-
ment, but it is no different to stating that you are more
likely: to have a common blood type compared to a rare
one; to live in a high population country than a small one;
to travel on a busy train than a quiet one. These are all in-
tuitive concepts, and (en masse) they represent experimen-
tally verifiable statements. They are not based on human
behaviour but simply the variance of group sizes, coupled
with our personal status as an ordinary individual. In gen-
eral, any group of which you are a member does not provide
an unbiased estimate of the median group size - it is an over-
estimate. There is little reason to believe this trend should
or could stop abruptly at the planetary scale.

To summarise, we model the two factors from (5) as
fi(H) ∝ H and Ni(H) ∝ H, which combine to yield a quadratic
scaling relation for the fecundity

F(H) ∝ H2 . (6)

For our fiducial model, the fecundity of a planet is taken
to be proportional to the square of the habitable land area.
One factor of H originates from the higher probability of
successfully forming an intelligent species somewhere on the
surface, if there is greater available area. The second factor
stems from the higher mean population size associated with
that greater area. We have also verified that our findings are
not significantly modified if we replace our fiducial F(H) ∝

H2 model with linear or cubic scaling relations. Therefore
the results presented in this work hold even if the formation
of intelligent life is an easy process (Simpson 2016b).

3.3 Modelling the Habitable Land Area

We can express a planet’s habitable land area as follows

H = 4πR2(1− fw) fh , (7)

where fh is the fraction of land which is deemed to be hab-
itable. The habitable fraction must vanish, fh → 0, as we
approach the limit where there is no surface water ( fw → 0).
In this extreme case the entire surface is rendered an un-
inhabitable desert. Planets with progressively greater ocean
coverage will, on average, possess a diminishing proportion
of desert. Ideally a suite of climate simulations could be used
to estimate the shape of this function. In this work we in-
terpolate these two extremes using a power law

fh = fw
α , (8)

where the Earth’s values of fh ≃ 0.7 and fw ≃ 0.71 are con-
sistent with our fiducial value α = 1. In the right hand panel
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Figure 3. An illustration of the strong bias which can arise for the radius R and water mass fraction W of an observer’s host planet.
The Earth is represented by the black square. Left: Our model for the joint probability distribution p(R,W), where the size distribution
of habitable planets p(R) is uniform in log space while water mass fraction is Gaussian in log space. (68 and 95 per cent CL). Centre:
The habitable land area H available on a given planet, in units of the Earth’s land area (approximately 149 million km2). Larger planets
are particularly prone to becoming ocean dominated. Right: The joint probability distribution for an observer’s host planet, p(R,W |O),
derived from the quantities depicted in the other two panels, via equations (3) and (6). (68 and 95 per cent CL).

of Figure 1, the three lines correspond to the habitable land
areas for three different α values: 1

5 ,1, and 5.
The oceanic coverage fw is computed via the hypso-

metric curve fw = A(hw), where the sea level hw is found by
integration

Vw = 4πR2
∫ hw

−∞
A(h)dh , (9)

provided |h| ≪ R.

4 THE ENSEMBLE OF SURFACE

CONDITIONS

In this section we construct a model for the ensemble of
oceanic and land areas among habitable planets. This model
will be used in the following section to illustrate the selection
effect that we are susceptible to when we measure our host
planet’s ocean coverage.

Since we have already established a relationship be-
tween the saturation value S and the oceanic area, we seek
to identify the two components that define S, namely the
oceanic volume Vw and the basin capacity Vb.

4.1 Volume of the Oceans

The volume of surface water on a given planet may be de-
composed into four contributing factors

Vw =W M fsρ−1
w , (10)

where W is the water mass fraction, M is the mass of the
planet, ρw is the density of water, and fs is the fraction of
the planet’s water inventory which resides on the surface. In
principle each of these variables could evolve as functions of
time. For simplicity, and to permit a consistent comparison
between different planets, we take these values to refer to
the planetary composition at an age of 4Gyr. That different

planets will lose water at different rates will likely serve to
increase the variance in their water compositions, compared
to their initial states.

To estimate the distribution of water mass fractions
p(W ) across the ensemble of habitable planets, we use the
15 planets from the numerical simulations of Raymond et al.
(2007), as presented in their Table 2. We find no statistical
evidence of a correlation between the size of a planet and its
water mass fraction. To determine whether the data vector is
consistent with being sampled from a Gaussian, we employ
the Anderson-Darling test. The raw W values were found to
be incompatible with a Gaussian, while log(W ) was found
to be consistent. We therefore model p(logW ) as a Gaussian
distribution, with a mean and standard deviation motivated
by the 15 planets in the simulation: log(9× 10−3) and 0.8
respectively. Estimates for the Earth’s value of W vary con-
siderably. Throughout this work the terrestrial value is taken
to be W⊕ = 10−3 (but note that this fiducial model is only
adopted for illustrative purposes, it has no bearing on our
final results).

To estimate M we adopt an empirically determined
mass-radius relation R ∝ M0.28 (Chen & Kipping 2016).
Based on projections from Kepler data (Silburt et al. 2015),
we consider the planetary radii to be evenly distributed in
log space, p(R) ∝ R−1. The breadth of the distribution p(R)
is not of particular significance to this work. Here we adopt
a relatively broad range of 0.5 < R/R⊕ < 1.5 in order to il-
lustrate possible radius-dependent effects.

We consider the surface water fraction fs to be constant
in our fiducial model. Stochastic fluctuations in fs are en-
tirely degenerate with fluctuations in W , so can be absorbed
into σw. If fs were to change systematically as a function
of the planet’s surface gravity, as explored in the Appendix,
this does not appear to have a significant impact on our re-
sults. However we would expect significant changes if fs were
correlated with the water mass fraction W , One example of
this correlation is where the mantle reaches a saturation
point, meaning that values of W beyond a critical point lead
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to ever-increasing values of fs. Meanwhile, at some critically
low value of W one expects there to be no permanent surface
water at all. For a given planet, some minimum volume of
water is required to saturate the surface environment. It is
unclear where this critical ‘desertification’ point lies, here we
shall simply assume this value lies below the range of values
under consideration. If at moderate values, between these
extreme regimes, an increase in W leads to a decrease in
fs, this would be indicative of a regulatory feedback mech-
anism, categorised earlier as hypothesis H2. As discussed
earlier, this could only operate over a modest range, due to
the limited capacity of the mantle. Here we shall focus on
exploring the viability of hypothesis H1.

4.2 Volume of the Surface Perturbations

The hypsometric curve A(h) encapsulates the proportion of
a planet’s surface area which lies below a given elevation
h. While we expect planet-to-planet variability in both the
shape and amplitude of the curve - the Earth shows signs
of a bimodal distribution - what is of importance in this
context is simply the statistical average. We model the shape
of the hypsometric curve using the cumulative distribution
function, corresponding to a Gaussian elevation profile, such
that

A(h) =
1

2
+

1

2
erf

(

h√
2σh

)

. (11)

Substituting (11) into (9), while setting hw = 0, yields a basin
capacity

Vb =

√

2

π
4πR2σh . (12)

Our fiducial value for the standard deviation of perturba-
tions, σh, is taken to match that of the Earth (σh = 2.51km).
Note that the choice of fiducial model is only for the purposes
of illustration: it will have no bearing on our final results.

Among the solar system’s terrestrial planets, there is no
clear trend to suggest how the amplitude of elevation profiles
change with respect to the planet’s radius. Even the Moon
possesses deviations in elevation which are of similar mag-
nitude to those of the Earth (see Table 1). For large radii,
R > R⊕, the amplitude of A(h) is expected to decay, partly
due to the stronger surface gravity, prohibiting large pertur-
bations in the crust (Kite et al. 2009). Yet even if no change
occurs, as we shall conservatively assume in our model, plan-
ets with larger radii will experience progressively greater
ocean coverage.

4.3 Saturation Value

Now we can combine these two expressions for Vw and Vb, in
order to gain insight into how the basin saturation S varies
across the ensemble.

S =
W M fsρ−1

w

4
√

2πR2σh

∝
WM0.44

σh

(13)

This allows us to estimate the standard deviation σS, a very
important quantity as it dictates the magnitude of the selec-
tion bias. If σS is very small then all habitable planets would
have the same surface conditions, so no selection effect can

push us far from the median value. It may be estimated by
summing the contributing terms in quadrature, as follows

(σS

S

)2
≃

(σw

W

)2
+

(

σσ

σh

)2

+0.19
(σm

M

)2
, (14)

provided the covariances are subdominant. Below we briefly
discuss these three contributing factors in turn

Fluctuations in the water mass fraction, σw, can arise
via the different compositions among proto-planetary disks,
and the stochastic nature of water delivery. The simulations
only account for the latter, and as mentioned earlier, they
appear to have a standard deviation in log space of 0.8, which
translates to σw/W ≃ 0.95.

To estimate the variability in σh, denoted σσ , we turn
to the rocky bodies in the solar system. In Table 1 we
present the amplitude of various elevation profiles, as given
by Lorenz et al. (2011) and Becker et al. (2016). The scatter
is suggestive of a fractional range σσ/σh ≃ 0.8.

Finally, for our array of habitable masses, σm/M ≃ 0.6,
but this does not make a significant contribution to σS as
it is suppressed by a factor of five. Substituting our three
estimates into (14) yields σS/S ≃ 1.3. This translates to a
standard deviation in log space of unity.

5 RESULTS

Our results are presented in three parts. The first part is
largely pedagogical, where we use our fiducial model to il-
lustrate the kind of selection effects that could arise among
a fixed population of planets. In the second part we shall al-
low this fiducial model to vary, in order to identify whether
there is empirical evidence for a selection effect. Finally, in
the third part, we shall infer whether other life-bearing plan-
ets are likely to be more or less ocean dominated than the
Earth.

5.1 Oceanic Selection Bias

In the left hand panel of Figure 3 we illustrate a fiducial
model for the distribution of habitable radii and water com-
positions p(R,W ). This corresponds to a median water mass
fraction µ = 9× 10−3, a standard deviation in logW of 0.8,
and we fix the rms elevation profile to be σh = 2.51km. (One
could also introduce scatter in the planet-to-planet value of
σh, but in terms of the surface conditions this is equivalent
to broadening the variance in W .) The solid and dashed con-
tours represent the 68% and 95% confidence limits respec-
tively. The Earth appears as an outlier in this case, with a
drier composition than over 97% of the ensemble of water-
bearing planets.

Many of these planets are heavily dominated by wa-
ter. This is reflected by the central panel of Figure 3, which
shows how the mean habitable area H varies across the
two-dimensional parameter space. The numerical values are
given in units of the Earth’s land area. While larger plan-
ets boast greater surface areas, they are more susceptible to
immersion due to their enhanced water volume. This is re-
sponsible for the sloped angle of the shaded region. At very
low water compositions, the habitable area is seen to dimin-
ish. This is due to the assertion that planets with very small

MNRAS 000, 1–15 (0000)



The Prevalence of Waterworlds 9

0 0.2 0.4 0.6 0.8 1
Ocean Surface Fraction

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
ro

ba
bi

lit
y 

D
is

tr
ib

ut
io

n 
fo

r 
P

la
ne

ts
µ = 1e-05
µ = 0.0001
µ = 0.001
µ = 0.01
µ = 0.1

0 0.2 0.4 0.6 0.8 1
Ocean Surface Fraction

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
ro

ba
bi

lit
y 

D
is

tr
ib

ut
io

n 
fo

r 
O

bs
er

ve
rs

µ = 1e-05
µ = 0.0001
µ = 0.001
µ = 0.01
µ = 0.1

Figure 4. The influence of selection effects in determining the ocean coverage of host planets of land-based species. Left: The probability
distribution for the fractional ocean coverage among habitable planets, for five different values of the median water mass fraction µ. If
taken at face value, only values very close to µ = 10−3 are consistent with the Earth’s ocean fraction of around 71%, as denoted by the
vertical dashed line. The variance of p(logW) remains unchanged in each case. Right: The same five models as the left panel, but here
we illustrate the probability distribution for an observer’s host planet. A much broader range of models are now consistent with the
observed value, particularly those in which the Earth is a relatively dry planet.

oceans are likely to lose much of their habitable surface to
desert.

In accordance with equation (6), the habitable area in-
fluences the fecundity of a planet, and hence the likelihood
of observing the set of planetary parameters. The distribu-
tion of planets as sampled by observers is presented in the
right hand panel of Figure 3. These 68 and 95% confidence
limits are derived from equation (3). The strong preference
for lower values of W , relative to the true ensemble, is as-
sociated with their greater available land area. The median
water mass fraction in this panel is more than a factor of 20
lower that the median value in the left panel. The Earth no
longer appears as an outlier, now that evolutionary selection
effects have been accounted for.

5.2 Bayesian Model Selection

Figure 4 explores the distribution of the oceanic coverage for
a range of values of µ, the median value of the water mass
fraction W . In effect, each line corresponds to a single model,
such as the one illustrated in Figure 3, and reflects the prob-
ability of finding a given ocean coverage, when choosing a
planet at random. The same range of planetary radii is used
as before. Starting at the driest cases of 10−5 and 10−4,
we see that most planets have surfaces dominated by land.
Then we have a ‘goldilocks’ value of 10−3 which generates a
relatively even balance in surface compositions. But higher
values of µ quickly lead to a preponderance of waterworlds.
This, like Figure 1, depicts the fine-tuning problem associ-
ated with the Earth’s water content. Unless the model is
very close to the terrestrial value (0.1%) then the vast ma-
jority of habitable planets are either extremely dry or almost
completely covered by water.

A possible resolution to the fine-tuning problem can be
seen in right hand panel of Figure 4. These are the same
set of five models shown in the left hand panel, but here
we plot the probability distribution for an observer’s host

planet, p⊕( fw). The distributions in the two different panels
are related by the fecundity, as shown in equation (4). The
selection effect acts to regulate the land-ocean divide, since
waterworlds and desert worlds are deemed unconducive for
the formation and proliferation of land-based intelligent life.
In particular, given our observed ocean coverage of 71%,
those models with a water mass fraction higher than the
Earth are associated with higher likelihood values. The max-
imum likelihood value for µ is approximately 1%, an order
of magnitude greater than that of the Earth, yet consistent
with the findings of Raymond et al. (2007).

Does Figure 4 lead us to favour the selection hypothesis
H1 (right hand panel) over the null hypothesis H0 (left hand
panel)? Is the Earth’s ocean coverage evidence of anthropic
selection? To proceed, we compute the Bayes factor K,

K =
P(D|H1)

P(D|H0)
=

∫

P(µ|H1)P(D|µ,H1)dµ
∫

P(µ|H0)P(D|µ,H0)dµ
. (15)

Note that the likelihood of µ, denoted P(D|µ), is represented
by the height of the curves in Figure 4 at the point where
they cross the vertical dashed line. For the vanilla model M,
the likelihood of µ is confined to a narrow window. By con-
trast, the model which invokes anthropic selection requires
less fine tuning. This is reflected in the Bayes factor K = 6.3,
which constitutes evidence in favour of anthropic selection
which is classified as ‘substantial’.

These findings are robust to a number of changes in the
model. For example, the quoted K = 6.3 relates to α = 1,
but for all three values under consideration, we consistently
find K > 5. Further modifications to the model are explored
in §A. Ultimately all that matters is the one-dimensional
distribution p(S), and the only critical criterion is that σS/S

is of the order unity, or greater. This seems a reasonable
assumption given the many different variables which feed
into it.

Further explanation and examples of hypothesis testing
can be found in MacKay (2003).
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Figure 5. The posterior probability distributions for the median surface water characteristics among habitable planets. In each case the
terrestrial value is marked as a vertical dashed line. Left: The median saturation S, as defined in (1), among habitable planets. Right: The
same analysis as the left hand panel, but now recast in terms of the median ocean coverage. For each value of σS under consideration,
we find that the majority of habitable planets are dominated by oceans (98% credible interval).

5.3 Is the Earth wet or dry?

Now we turn our attention to what may be inferred about
the ensemble of other life-bearing worlds. First we need
a framework for the basin saturation values S. Motivated
by the anticipated scatter from the contributing factors in
(13), we consider a Gaussian distribution in logS, such that
logS ∼ N (µS,σ

2
S ). In order to infer the median value µS

among habitable planets - and hence the typical expanse of
exoplanetary oceans - we shall evaluate the posterior proba-
bility p(µS|D), which may be derived from the likelihood as
follows

p(µS|D) ∝

∫

p(D|µS)p(µS)dµS . (16)

We adopt an uninformative prior p(µS) ∝ µ−1
S across the

range 10−4 < µS < 104. The second important variable is σS.
While it is challenging to predict the magnitude of σS, it is
unlikely to be small, given the multitude of sources which
contribute to its variation. These include (a) the ampli-
tude of surface perturbations, (b) variable water abundances
across stellar nebulae, (c) varying water mass fractions ac-
cumulated during the process of planetary formation, (d)
variations in the sizes of habitable planets, and (e) variable
rates of water loss.

The left hand panel of Figure 5 illustrates the poste-
rior probability p(µS|D) for three different values of σS, and
for reference we mark the terrestrial value S⊕ with a vertical
dashed line. There is a clear preference for µS > S⊕, and that
this preference strengthens for greater values of σS. For our
fiducial variance in S (σS = 1), we find p(µS > S⊕) = 0.91.
Very small values of σS would suggest an extremely limited
range of surface conditions among the ensemble of habitable
planets, and so by construction we would expect our planet
to be representative of others, irrespective of selection ef-
fects.

The right hand panel of Figure 5 depicts the cumulative
probability of the median oceanic coverage, and as with the
left hand panel, we explore three different values for σS. For
our fiducial value, σS = 1, we find that most are heavily water

dominated ( fw > 90%) (95% credible interval). Meanwhile
our confidence that most are water dominated ( fw > 50%)
exceeds 99%.

These results use the habitable land area defined in (7),
with α = 1. Lower values of α are associated with stronger
confidence, while higher values of α weaken the conclusion.
Yet even for the case α = 5, which is associated with an
extremely rapid onset of desertification (see Figure A1), our
confidence that the Earth is relatively dry remains over 80%.

Why should we favour a scenario which actually de-
viates from our single observational value? This ultimately
stems from the highly nonlinear relationship between the
water volume and the resulting ocean coverage. If most hab-
itable planets are waterworlds, then those few planets with
some exposed continents will tend to be ocean-dominated.
Conversely, if habitable planets tend to be land-dominated,
there is little reason to believe an observer should find them-
selves in the narrow window of parameter space that pro-
duces an ocean-dominated planet. This conclusion is not de-
pendent on the details of our chosen model - it will arise for
any function f (S), provided σS is not very small. Further ev-
idence to support the robustness of our model is presented
in Appendix A.

6 CONCLUSIONS

On a purely statistical basis, one näıvely expects to find a
highly asymmetric division of land and ocean surface ar-
eas. A natural explanation for the Earth’s equitably parti-
tioned surface is an evolutionary selection effect. We have
highlighted two mechanisms which could be responsible
for driving this selection effect. First of all, planets with
highly asymmetric surfaces (desert worlds or waterworlds)
are likely to produce intelligent land-based species at a much
lower rate. Secondly, planets with larger habitable areas are
capable of sustaining larger populations. Both of these fac-
tors imply that our host planet has a greater habitable area
than most life-bearing worlds.

We have exploited this model of planetary fecundity to
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draw two major conclusions. First of all, we find that the
Earth’s oceanic area provides substantial evidence in favour
of the selection model. Secondly, in the context of this model,
we find that most habitable planets have surfaces which are
over 90% water (95% credible interval). Our results are ro-
bust to a broad variety of modifications to the model. The
only critical assumption is that there is a significant variance
in the basin saturation among habitable worlds, specifically
σS/S & 0.5. This appears likely given that there are many
variable factors which contribute to a planet’s surface water
volume and basin capacity.

The anticipated prevalence of waterworlds is driven by
the fact that our home planet is close to the waterworld
limit. Such proximity to a critical limit is precisely what one
expects to find in the presence of a selection effect, provided
only a smooth tail of the distribution lies below the critical
limit. This reasoning was previously exploited by Weinberg
(1987) to successfully predict the value of the cosmological
constant.

If the Earth’s basin saturation is biased low, this implies
that (a) its water mass fraction is likely to be biased low and
(b) its elevation amplitude is likely to be biased high (and
as with the basin saturation, the magnitude of this bias will
depend on the planet-to-planet variance of these quantities).
Do these two scenarios appear feasible? The water mass frac-
tion among habitable planets could be considerably higher
than the Earth. For example, numerical simulations based
on delivering water from planetary embryos found a median
water mass fractions of approximately 1% (Raymond et al.
2007), ten times higher than the terrestrial value. Extremely
elevated water compositions have been associated with the
inflation of planetary radii (Thomas & Madhusudhan 2016).
This scenario, in which the Earth is among the driest habit-
able planets, could help explain the appearance of a low-
mass transition in the mass-radius relation of exoplanets
(Rogers 2015; Chen & Kipping 2016).

If it transpires that the Earth is indeed unusually dry
for a habitable planet, then one might wonder what the
mechanism was. Does the Solar System have some distin-
guishing feature that was responsible? For example, per-
haps the low eccentricities and inclinations of solar sys-
tem planets are inefficient at promoting water delivery. An-
other possibility could be the influence of the Grand Tack
model, where Jupiter underwent a reversal of its migration
(Walsh et al. 2011). This has been found to yield a deliv-
ery of water that is approximately consistent with terres-
trial levels (O’Brien et al. 2014). However recent simula-
tions of the Grand Tack scenario suggest that, if anything,
this may enhance the delivery of water to terrestrial plan-
ets (Matsumura et al. 2016), rather than curtail it. Alter-
natively, a dry Earth may not necessarily have arisen from
an identifiable macroscopic feature, it could simply be as-
sociated with the inherently stochastic nature of the water
delivery process.

It also appears feasible that the Earth has an unusu-
ally deep ocean basin. The gravitational potential associated
with its surface fluctuations is much higher than any other
body in the solar system. In turn this may suggest the Earth
has unusually strong tectonic activity, and consequentially,
an abnormally strong magnetic field. This exemplifies how
selection effects can easily be transferred to correlated vari-
ables.

Could the planet-to-planet variability in S be very
small? Feedback mechanisms may have acted to regulate
the depths of planetary oceans relative to the magnitude
of their surface perturbations (Abbot et al. 2012). Earlier
we denoted this possibility H2. Fortunately this hypothesis
leads to a very different forecast for the surface conditions of
Earth-like planets. If H2 is correct, we shall discover that a
substantial proportion of habitable planets share the Earth’s
equitable water-land divide. This is in stark contrast to the
prediction of our selection model, based on H1, where hab-
itable planets are dominated by oceans.

Other aspects of the Earth’s surface that are suscepti-
ble to selection effects include the spatial configuration of
land. For example, if a planet’s land area were retained in
a single contiguous piece, akin to Pangea, it may be that
either a larger proportion of the land is rendered uninhab-
itable, or the ecological diversity is significantly suppressed.
The Earth’s land configuration may be optimised to ensure
that the majority of the available area is habitable, thereby
maximising its fecundity, as defined in (4).

This work builds on Simpson (2016c) by providing a
further demonstration of why the Earth is likely to appear
as a statistical outlier, across a broad spectrum of physical
properties, when compared to other life-bearing worlds. In
general, if a planet’s population size is correlated with any
variable, then the mean value witnessed by individuals will
always exceed the true mean. This is true for any distribu-
tion of population sizes (see Appendix B).

Ordinarily a single random sample is not particularly
helpful in informing us on the nature of a broad population.
However this limitation only applies to fair samples. A single
biased sample can be used to place a lower (or upper) bound
on the entire population distribution. For example, if the
only data point we had regarding human running speed was
taken from an Olympic 100 metres final, then we can be
confident that a subsequent fair sample, across the global
population, would not be significantly faster. Provided the
population variance is significant, than we can be confident
in finding a substantial deviation between the fair sample
and the biased sample.

To give a further pedagogical example: imagine that
you look at a kitchen worktop and notice some spilled coffee
granules. One of those granules, selected at random, is found
to lie within 0.1mm from the edge of the 600mm worktop.
This proximity could of course be entirely coincidental. But
it is much more likely that the bulk of the granules fell on
the floor, and what you are seeing is merely the tail end of
the distribution.

The fine-tuning of the Earth’s parameters is closely re-
lated to the proposition that various cosmological param-
eters correspond to those which optimise star formation
(Tegmark et al. 2006). The key difference here is that many
elements in the planetary ensemble are observable, and thus
our predictions are experimentally falsifiable. Indeed, it may
not be long before we begin to build a census of nearby hab-
itable planets, and begin to develop an understanding of how
the Earth compares to other habitable worlds (Catala et al.
2009). If habitable planets systematically differ from the
Earth in some way - such as the ocean coverage discussed in
this work - this provides a hint as to the conditions which
favoured the development of intelligent life. It would show
that there is a bias between the inner sets of Figure 2. This
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bias tells us something about why we evolved on this par-
ticular lump of rock.

It has been argued that the finely-tuned properties of
our planet is indicative of the sparsity of life in the Uni-
verse - the so-called ‘Rare Earth hypothesis’. However this
interpretation overlooks one of the key factors which control
the selection effect: the number of observers produced by
each planet. The conditions on an individual’s home planet
is heavily skewed in favour of those conditions which max-
imise the abundance of life. As an analogy, consider the con-
tiguous piece of dry land you live on. It is extremely special,
in the sense that it is one of the largest pieces of contiguous
land on the Earth’s surface. But at the same time, there are
hundreds of thousands of smaller chunks of land scattered
across the Earth’s surface. The selection effect that takes
place when studying the ground beneath your feet is not
a fair one. Likewise, the rarity of the Earth’s parameters
need not reflect the sparsity of life in the cosmos. On the
contrary, it may be driven precisely because we are a small
piece within a vast ensemble.

When physiologists seek a deeper understanding of our
body’s features, such as our eyes and ears, a great deal of
progress can be made from laboratory experimentation. Yet
the only way to arrive at a comprehensive answer is by in-
cluding a complementary analysis of our origins. This allows
biological function to be placed in an evolutionary context.
A similar statement can be made regarding the features of
our planet. No matter how formidable our understanding of
planet formation becomes, one can never hope to fully ap-
preciate the Earth’s features without addressing the issue of
how we came into being upon it.
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APPENDIX A: ROBUSTNESS OF THE

RESULTS

In this section we explore the impact of deviations from the
fiducial model, first in terms of the habitable land area H,
and then the fraction of water stored on the surface fs.

A1 Modelling the habitable land area

The fiducial model assumed a linear progression from a
desert-dominated landmass, to a fully habitable one. This
was defined in equation (8), taking α = 1. Clearly in reality
the progression may take on a different functional form, so
here we shall explore the influence of the exponent α.

In Figure A1 we can see the power law relations which
we use to model the fraction of land which is rendered an
uninhabitable desert. The solid line represents the fiducial
case (α = 1), while the lower dashed line illustrates α = 5.
The upper dashed line corresponds to α = 1

5 , and this would
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Figure A1. The three different models of how the mean unin-

habitable area approaches the full desert state associated with a
dry planet. The solid line reflects our fiducial model (α = 1), while
the lower and upper dashed lines represent the cases where α = 1

5

and α = 5 respectively. These three models are used in Figures
A2 and 4.

correspond to a mean fraction of land lost to desert of over
75%, for planets with an Earth-like ocean coverage.

There is of course some ambiguity in the point at which
land becomes uninhabitable. As shown by the datapoint in
Figure A1, some 33% of the Earth’s land is classified as
desert. A more stringent classification is a region which re-
ceives less than 250mm of rainfall per year, which severely
compromises the ability for macroscopic organisms to thrive.
Approximately 14% of the Earth’s land mass satisfy this cri-
teria (Cordey 2013).

Figure A2 demonstrates the impact of α on the like-
lihood of different planetary water compositions. The left
panel adopts α = 1

5 , yet still bears a close resemblance to the
fiducial case of α = 1. The drier configurations are now more
viable, since desert form more aggressively in this model.
The right panel show the result for α = 5, and again the
trend is much the same, closely resembling the result of Fig-
ure 4. The tendency for the data to prefer water-rich models
therefore holds for a broad range of desert models.

A2 Modulating the surface water fraction

In our fiducial model we assume that the proportion of a
planet’s water which resides on the surface, fs, does not sys-
tematically change with planetary radius or water composi-
tion. Cowan & Abbot (2014) present a model for a variable
mantle water fraction, which scales with the planet’s surface
gravity. In Figure A3 we repeat the procedure used to pro-
duce Figure 3, but now employ the scaling relation which
leads to more massive planets retaining a greater propor-
tion of their water inventory within the mantle. This enables
them to posses large areas of habitable area, as is apparent
from the central panel. Nonetheless the key outcome in the
right panel, a strong reduction in the observed water com-
position, is unchanged from the fiducial model.

In Figure A4 we see the impact the feedback model
of Cowan & Abbot (2014) has on the ocean coverage dis-
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The Prevalence of Waterworlds 13

0 0.2 0.4 0.6 0.8 1
Ocean Surface Fraction

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
ro

ba
bi

lit
y 

D
is

tr
ib

ut
io

n 
fo

r 
O

bs
er

ve
rs

µ = 1e-05
µ = 0.0001
µ = 0.001
µ = 0.01
µ = 0.1

0 0.2 0.4 0.6 0.8 1
Ocean Surface Fraction

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
ro

ba
bi

lit
y 

D
is

tr
ib

ut
io

n 
fo

r 
O

bs
er

ve
rs

µ = 1e-05
µ = 0.0001
µ = 0.001
µ = 0.01
µ = 0.1

Figure A2. Each panel is in the same format as the right hand panel of Figure 4, but here we alter the values of α which controls how
the mean habitable area evolves as a function of ocean coverage, as specified by equation 8. In the left panel we set α = 1

5
, while in the

right panel α = 5.

Figure A3. The same format as Figure 3, but adopting a deep water cycle which leads to larger planets holding a greater proportion
of their water content within the mantle. The radial dependence is modified, but the overall effect of suppressing the observed water
composition remains unchanged.

tribution, both for the total ensemble (left panel) and the
ensemble of observers (right panel). In this feedback model,
planets less massive than the Earth retain less water in the
mantle, and so are more prone to flooding. Conversely more
massive retain more water in the mantle, so not as suscepti-
ble to flooding as they had been without the feedback model.
Since we are viewing the average over the full ensemble, the
net effect is barely distinguishable from the fiducial model
of Figure 4.

Note that this model still does not explore fs evolving as
a function of W , which would arise if a feedback mechanism
operates to regulate the ocean volume. However as discussed
in §2.3, there are fairly stringent limits on the strength of
this feedback effect, due to the finite capacity of the mantle.

APPENDIX B: GROUP SELECTION BIAS

Here we present a brief proof that selecting an element at
random (an observer in the context of this work) will always
lead to an amplification of any quantity which is correlated
with the population of the group.

Given a set of elements X partitioned into N subsets,
we define ni as the number of elements in the ith subset. If
each subset is assigned a value for a secondary variable ri,
and this variable r is positively correlated with ni, then by
definition

∑
i

(ri − r̄)(ni − n̄)> 0 , (B1)

or equivalently

∑
i

niri −Nr̄n̄ > 0 . (B2)
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Figure A4. The same format as Figure 4, but here we adopt a feedback model where the mantle water fraction evolves in accordance
with Cowan & Abbot (2014).

This may be rearranged as follows

∑i niri

∑i n̄
> r̄ , (B3)

where the expression on the left hand side is the definition of
the elemental mean r̄e. The elemental mean therefore always
exceeds the group mean, for any distribution ni

r̄e > r̄ . (B4)
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