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Thermally anomalous features in the subsurface 
of Enceladus’s south polar terrain
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C. Howett7, R. Kirk8, R. D. Lorenz9, R. D. West3, A. Stolzenbach1, M. Massé4, A. H. Hayes10,  
L. Bonnefoy11, G. Veyssière12 and F. Paganelli13

Saturn’s moon Enceladus is an active world. In 2005, the 
Cassini spacecraft witnessed for the first time water-rich 
jets venting from four anomalously warm fractures (called 
sulci) near its south pole1,2. Since then, several observa-
tions have provided evidence that the source of the material 
ejected from Enceladus is a large underground ocean, the 
depth of which is still debated3–6. Here, we report on the first 
and only opportunity that Cassini’s RADAR instrument7,8 had 
to observe Enceladus’s south polar terrain closely, target-
ing an area a few tens of kilometres north of the active sulci. 
Detailed analysis of the microwave radiometry observations 
highlights the ongoing activity of the moon. The instrument 
recorded the microwave thermal emission, revealing a warm 
subsurface region with prominent thermal anomalies that 
had not been identified before. These anomalies coincide with 
large fractures, similar or structurally related to the sulci. The 
observations imply the presence of a broadly distributed heat 
production and transport system below the south polar ter-
rain with ‘plate-like’ features and suggest that a liquid reser-
voir could exist at a depth of only a few kilometres under the 
ice shell at the south pole. The detection of a possible dormant 
sulcus further suggests episodic geological activity.

The Cassini spacecraft (NASA (National Aeronautics and Space 
Administration), the European Space Agency and the Italian Space 
Agency) has explored the Saturnian system for the past 12 years. The 
detection of water-rich jets erupting from four large fractures (also 
called sulci, or informally, the ‘tiger stripes’) near the south pole of 
Enceladus is one of the major discoveries of the mission1,2. These 
jets are evidence for ongoing internal activity at Enceladus, whose 
south polar terrain (SPT) is anomalously warm and radiates an 
endogenic power of up to ~16 GW as indicated by thermal infrared 
data9,10. The detection of sodium salts3 in the icy grains ejected from 
Enceladus, together with topography and gravity data4,5, strongly 
suggest that the moon hides a reservoir of liquid water beneath its 
surface. The recent detection of a large physical libration6 provides 
the first evidence for a global ocean underneath a relatively thin  
ice shell, potentially as thin as 5–10 km in the SPT. This ocean may 

harbour hydrothermal activity on its floor11 and Enceladus is there-
fore one of the most promising environments suitable for extant life 
in the Solar System.

On 6 November 2011, during the closest approach of the 16th 
Enceladus encounter (flyby E16), the RADAR system7,8 onboard the 
Cassini spacecraft had an opportunity to observe closely Enceladus’s 
SPT. At a distance of ~500 km from the surface, the instrument 
acquired a synthetic aperture radar (SAR) image (Fig.  1a) and 
recorded the 2.2-cm-wavelength thermal emission (Fig.  1b) of an 
arc-shaped region, which is ~500 km long and ~25 km wide, centred 
at 63° S and 295° W, and located 30–50 km north of the thermally 
active sulci identified as the sources of Enceladus’s jets. The cali-
brated surface brightness temperatures measured during E16 cover 
a range from . − .

+ .32 0 2 6
0 6 to . − .

+ .60 0 4 8
1 2 K. Herein, we demonstrate that 

these temperatures, like those measured over the SPT in the infra-
red9,10, are too high for a purely exogenic explanation, with implica-
tions for endogenic processes and heat transport in Enceladus’s SPT.

Microwave radiometers can be used to detect subsurface activity 
occurring at temperatures much lower and at depths much greater 
than those sampled by infrared instruments12–14. The Cassini radi-
ometer measures a surface brightness temperature (Tb) that, as 
per the Rayleigh-Jeans law applicable at the 2.2 cm wavelength, is 
the product of the surface emissivity (e) and the effective physical 
temperature (Teff), or the vertical temperature profile weighted by 
a radiative transfer function and integrated over depth: Tb =​ eTeff. 
The mean emission depth, or penetration depth, into icy regoliths is 
typically 10 to 100 wavelengths (ref. 15), which translates into several 
tens of centimetres up to a few metres for the Cassini radiometer.

Interestingly, the region observed by the Cassini RADAR dur-
ing the closest approach of E16 was entirely in cold darkness: one 
part was on the night side of Enceladus while the other was expe-
riencing a solar eclipse. However, where the penetration depth is 
large enough, the temperatures sensed by the Cassini radiometer 
are dominated by the seasonal signal and thus decoupled from the 
surface conditions (for example, ref. 16). This is key for the analysis 
of the E16 radiometry observations, which occurred shortly after 
the vernal Equinox; that is, at a time when a significant amount of 
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heat had been stored in the south polar regions from the previous 
summer. Thermal simulations show that the buried heat and the 
contribution from Saturn’s infrared thermal emission (the main 
source of heating during a solar eclipse) can increase the effective 
temperature by up to 5 K, compared with the surface temperature, 
and predict a maximum Teff of 60 K.

Only a fraction (e) of the thermal energy is emitted by radia-
tion from Enceladus’s surface and detected by the Cassini radiom-
eter. Distant observations have shown that Enceladus has one of 
the lowest disk-averaged 2.2 cm emissivities in the Saturnian sys-
tem, namely ~0.6–0.7 (ref. 17,18). This is due to a volume scattering 
mechanism (for example, ref. 19): the transparency and porosity of 
Enceladus’s clean water ice regolith provides enhanced opportunity 
for scattering, which prevents the emitted waves from escaping  
the subsurface.

More specific constraints on Enceladus’s surface 2.2 cm emissivity 
along the E16 track can be derived from concurrent active measure-
ments (Fig. 1a), by virtue of Kirchhoff ’s law of radiation. Although 
we also considered the case of a Lambertian (that is, isotropically  
diffuse) surface (hereafter LS), we found that the combined emissivity– 
backscatter model proposed in ref. 20 for a surface presuming a vol-
ume scattering medium including the effects of polarization and 
coherent backscattering (CBE, which is the reflection enhancement 
around the backscatter direction that may occur with high-order 
scattering; see ref. 21 for example) best reproduces the E16 radiom-
etry measurement variations, pointing to maximum emissivities in 
the range 0.40–0.85. Surfaces described by this model are hereafter 
referred to as diffuse scattering surfaces (DSS) with CBE.

With our thermal, radiative transfer and emissivity models, 
we estimated the maximum expected brightness temperatures in 
the absence of endogenic flux and compared them with the E16 
radiometry observations. This revealed that the measured Tb val-
ues were too high to be caused by the simple thermal re-radiation  
of the light absorbed at the surface and require a buried heat 
source. Figure  2 displays the excess of flux once the maximum 
predicted passive thermal background has been subtracted from  

the radiometry measurements considering an LS (Fig.  2a) and  
a DSS with CBE (Fig. 2b). The thermal anomaly is especially pro-
nounced over two or three areas.

First, thermal anomalies—with a peak value of . − .
+ .1 1 0 5

0 2 W m−2 
for an LS and . − .

+ .3 0 1 0
0 2 W m−2 for a DSS with CBE—appear coinci-

dent with one or two curved scarps associated with sharp eleva-
tion changes (up to ~1 km (ref. 22)) and the bounding radar-bright 
V-shaped discontinuities located at the eastern and western ends of 
the swath (Fig. 2c,e). The broken-up appearance of these disconti-
nuities in the SAR image and their blue colour in Cassini Imaging 
Science Subsystem (ISS) images suggest the presence of coarse-
grained ice, like in the active sulci, and thus recent activity23.

Second, a thermal anomaly appears in the centre of the E16 
track where the most prominent surface landform is a 2 km-wide,  
tens-of-km-long and ~650 m-deep linear fracture (Fig. 2c,f), similar 
in appearance to the ‘tiger stripes’ and running roughly parallel to 
them. If a localized thermal anomaly is indeed associated with this 
fracture, it is at least three times larger in amplitude than indicated 
in Fig. 2a,b, where it is diluted in the wide instrument footprint that 
is perpendicular to the feature. The nearby smaller fractures may 
also contribute to the measured thermal signal.

No jet has been observed in the region of interest. Nor do 
9–17-μ​m-wavelength observations by Cassini’s Composite Infrared 
Spectrometer (CIRS) show any obvious hint of endogenic emis-
sion (Fig. 2d). However, this is readily explained by both the poor 
sensitivity to low temperatures (<​65 K) at short wavelengths and 
the different penetration depths of infrared and radio waves. The 
linear fracture at the centre of the E16 swath could be a ‘dormant’ 
or ‘dying’ sulcus: too cold at the surface to be distinguished from 
the passive thermal background by CIRS and/or masked by a ther-
mally insulating layer of frost (for example, one formed from plume  
particle fallout) but warm a few metres below.

In addition to warm individual features, the model for a DSS 
with CBE argues in favour of a broadly distributed heat source 
below Enceladus’s SPT with a mean heat output (once the contri-
bution from the three features mentioned above is removed) of 
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Figure 1 | Stereographic polar projection of active and passive RADAR observations of Enceladus’s SPT acquired during the closest approach of  
flyby E16. a, E16 SAR image (resolution: ~50 m and ~200 m in the cross- and along-track directions, respectively) overlaying a colour mosaic produced  
by the Cassini ISS (PIA18435). The mapped region includes part of the Mosul Sulci system and two V-shaped regions (near the western and eastern  
ends of the swath) exhibiting especially high backscattering cross-sections 𝜎0. b, E16 surface brightness-temperature map (wavelength, 2.2 cm;  
resolution, ~4 km ×​ 25 km in the middle of the swath) overlaying a visible-light ISS mosaic (PIA14937). Radiometer measurement footprints are long and 
narrow ellipses with the long axis roughly in the cross-track direction. The measured brightness temperatures cover a range from −

+32.0 2.6
0.6 to −

+60.0 4.8
1.2  K.
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at least 0.5 W m−2. This value agrees well with the average excess 
flux derived from CIRS 17–1,000-μ​m-wavelength measurements  
over Enceladus’s SPT (~0.4–0.5 W m−2 (ref. 10)) and with the  
estimate of the heat flux arising (probably currently) from the 
deformed funiscular terrains between the sulci (potentially as high 
as 0.4 W m−2 (ref. 24)).

A mean excess flux of ~0.5 W m−2 implies a very strong heat 
source beneath the surface, most probably endogenic in nature, and 
is consistent with the presence of liquid water at depths as small 
as 2 km beneath the central part of the SPT (see Supplementary 
Information), as suggested by the recent interpretation of the libra-
tion, topography and gravity data25. This implies a pronounced 
thinning of the ice shell in the SPT (<​5 km), and abrupt thickening 
in the surrounding terrains (cl3 unit in Fig. 3a and ref. 26).

The only known heating mechanism capable of generating sus-
tained temperature increases like those observed is tidal dissipa-
tion driven by the rhythmic distortions of Enceladus as it follows 
its eccentric orbit around Saturn1. Unlike for large moons such 
as Europa or Titan (for example, ref. 27), tidal deformation within 
Enceladus’s ice shell is very sensitive to its thickness (for example, 
ref. 28): shell thinning results in a strong increase in tidal deforma-
tion and hence in the production of heat by both viscous dissipation 
and shear heating along faults25.

The four ‘tiger stripes’ of Enceladus are most probably located 
in the thinnest part of the SPT. In contrast, according to ref. 25, the 
potential ‘dying’ or dormant sulcus (Fig.  2f) is in an area where 

the shell thickness is two to three times greater; that is, where tidal 
deformation and the connectivity with the subsurface ocean are 
reduced (Fig. 3b). This could explain why this fault is not currently 
a source of jets. It may have experienced eruption activity in the 
recent past when the ice shell was thinner and ceased its activity due 
to, for example, the subsurface ocean crystallization. Alternatively,  
it may be in a temporary or permanent dormant state if it takes 
more time or is simply impossible to trigger water eruptions in a 
thicker ice shell.

On the basis of their location at the boundary between the csp 
and cl3 units (Fig. 3a), the warm scarps on the edge of the E16 swath 
(Fig. 2e) could be extensional faults related to the gravitational relax-
ation of the ice shell, as observed on Earth at the boundaries of regions 
of crustal thickness difference (for example, the Basin and Range29). 
Alternatively, they could indicate compression resulting from equa-
torward motion of material in response to crustal spreading at the 
‘tiger stripes’30; for example, analogous to seafloor spreading at ter-
restrial mid-ocean ridges. Enhancement of tidal heating in the SPT 
margins due to the complex tidal response of SPT faults31 may also 
play a role, further increasing the thermal anomaly. In all cases, the 
activity would lead to the local upward deflection of the isotherms 
in the crust, thereby producing a strong local increase in the radial 
thermal gradient (Fig. 3b) and, hence, a heat flow anomaly.

We note that no sign of current endogenic activity has been 
indicated by the Cassini radiometer at Enceladus’s lower latitudes. 
However, geological evidence (for example, ref. 26) and estimates of 
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Figure 2 | Thermal anomalies along the E16 RADAR track. a,b, Minimum heat fluxes in excess as derived from the microwave radiometry observations 
assuming an LS (a) or a DSS with CBE (b). c, ISS colour mosaic of Enceladus’s SPT with the three main surface features associated with peak heat  
outputs on a and b indicated by arrows. d, Map of CIRS observations of the SPT (wavelength, 9–17 μ​m; resolution, ~25–30 km per pixel) with the E16  
swath outlined in white. e,f, Close-up ISS images of the curved scarp part of the Mosul Sulci system (e) and of the possible dormant sulcus located in  
the middle of the E16 track (f).
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palaeo-heat flows comparable to the SPT’s present-day output (for 
example, ref. 32) suggest that the leading and trailing sides have also 
experienced episodes of being in a dissipative state. The present 
detection of a possible dormant sulcus and of warm fractures at the 
edge of ‘plate-like’ features is a further argument for a non-steady 
state of Enceladus, involving a dynamical evolution of the ice shell. 
Subsurface radar sounding together with detailed surface mapping 
by a future exploration mission may reveal the complex subsurface 
dynamics of this active ocean world.

Methods
For the analysis of the Cassini radiometry data collected during the closest 
approach of flyby E16 (E16 passive radar data), we developed a model  
to predict the microwave thermal emission from Enceladus’s surface in the 
absence of an endogenic heat source. In this approach we combined three  
models: (1) a thermal model providing the physical temperature–depth profile 
below the surface at the epoch of the E16 measurements and as a function 
of the thermal properties, (2) a radiative transfer model to infer the effective 
temperature (Teff) sensed by the Cassini radiometer down to a given depth 
(namely the emission depth), and (3) an emissivity model (e) that relies on 
the combined emissivity–backscatter model proposed in ref. 20 and uses the 
concurrent E16 active radar data. These models are further described in  
the Supplementary Information. The thermal model, in particular, considers  
both diurnal and seasonal timescales of insolation and thermal variations,  
and takes into account solar eclipses that were daily at the time of the E16 flyby,  
as well as heating from Saturn (both from its infrared thermal and the  
sunlight reflected by its upper atmosphere). It was validated by comparison  
with Cassini’s CIRS observations and other thermal models. Combined 
with a radiative transfer model, it was able to reproduce Cassini radiometry 
measurements at Iapetus and to predict Pluto’s subsurface temperatures16.  
For the emissivity model, we explored two types of surface: an LS and a DSS 
with CBE. The DSS with CBE best reproduced the variations of the measured 
brightness temperatures along the E16 RADAR track. It is also the best suited  
class of surfaces for Titan’s radar-brightest terrains which are potential  
analogues for Enceladus’s terrains.

The free parameters of the global model were then adjusted to predict the 
maximum expected brightness temperatures (Tb =​ eTeff in the Rayleigh-Jeans 
domain) along the E16 RADAR track in the absence of an endogenic heat  
source. These predicted temperatures were compared with the measured 
ones, showing that the E16 radiometry measurements cannot be explained 
without invoking a buried heat source. The difference between predictions and 
measurements was used to estimate the minimum excess heat flux along the E16 
track and the depth of a potential liquid layer assuming a pure-water ice shell  

(see Supplementary Information). One of the thermal anomalies seems 
to coincide with a large sulcus-like feature whose depth was estimated by 
radarclinometry (see Supplementary Information).

Data availability. The data reported in this paper are archived in the Planetary 
Data System: http://pdsimage.wr.usgs.gov/archive/co-v_e_j_s-radar-3-sbdr-v1.0/
CORADR_0232/. The simulation results are available from A.L.G. on request.
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