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Abstract. We illustrate and discuss the view seen by an observer inside the
horizon of a Schwarzschild black hole. The view as the observer approaches the
central singularity is of particular interest because, according to ideas arising from
“observer complementarity,” points in opposite directions along the observer’s
past lightcone are at “the edge of locality,” where standard flat-space quantum-
field-theory commutation rules may be at the brink of failure. Near the singularity,
the observer’s view is aberrated by the diverging tidal force into a horizontal plane.
The view in the horizontal plane is highly blueshifted, but all directions other than
horizontal appear highly redshifted. We argue that the affine distance provides a
canonical measure of distance along a light ray from emitter to observer. Since
the affine distance is not directly measurable by the observer, we also consider
perceptual distances, and argue that the trinocular distance (binocular distance is
inadequate) provides an estimate of affine distance that would allow tree-leaping
apes to survive in highly curved spacetime.
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1. Introduction

What does it look like when you fall inside the horizon of a (Schwarzschild, for
simplicity) black hole? Based on your experience in the 3D world, you might imagine
that falling through the horizon would be like falling through any other surface. But
it is not.

As its Penrose diagram shows, Figure 1, the Schwarzschild geometry contains not
one but two distinct horizons, the future horizon, and the past horizon. The future
horizon may be called the “ingoing” horizon, since photons that fall through it are
necessarily ingoing, falling towards the black hole. The past horizon may be called
the “outgoing” horizon, since photons that emanate from it are either moving away
from the black hole (outside the horizon), or trying (and failing) to do so (inside the
horizon).

Of course, in a real black hole formed from the collapse of the core of a star,
there is no past horizon. The past horizon is replaced by an exponentially redshifting
region that contains the collapsing star and its interior (and beyond). However, as
time goes by, the exponentially redshifting image of the collapsing star becomes more
and more indistinguishable from the outgoing horizon of a Schwarzschild black hole.
In this paper, we suppose that the black hole collapsed long enough ago that it has
become effectively indistinguishable from a Schwarzschild black hole, and we refer to
the exponentially redshifting surface as the outgoing horizon.

As Figure 1 shows, when an observer outside the horizon observes the horizon of a
black hole, they are actually observing the outgoing horizon. When they subsequently
fall through the horizon, they do not fall through the horizon they were looking at, the
outgoing horizon; rather, they fall through the ingoing horizon, which was invisible
to them until they actually passed through it. Once inside the horizon, the infaller
sees both outgoing and ingoing horizons. The outgoing horizon appears ahead of
the infaller, in the direction towards the black hole, just as it did when the infaller
was outside the horizon. The ingoing horizon appears behind the infaller, in the
direction away from the black hole. Together, the outgoing and ingoing horizons form
apparently 2D surfaces that encompass the infaller, the “Schwarzschild bubble.” The
outgoing and ingoing horizons meet at a circle; at this circle, the angular momentum
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Figure 1. Penrose diagram of a Schwarzschild black hole. The arrowed line
represents the worldline of an infaller. The wiggly lines represent outgoing and
ingoing photons emitted from the outgoing and ingoing horizons.
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Figure 2. (Color online) Causal diamond (mauve) of an observer who hits the
singularity of a Schwarzschild black hole. Null rays in opposite directions (thick
red and blue lines) along the past lightcone of such an observer lie at the edge
of locality, the future lightcones of such points being on the cusp of intersecting.
Observer complementarity asserts that locality applies within the causal diamond
of any observer, but breaks down between spacelike-separated points that lie
outside any observer’s causal diamond, that is, whose future lightcones do not
intersect.

per unit energy of emitted photons is infinite.
In case the reader is suspicious that the Penrose diagram, Figure 1, may not

capture the scene reliably, because the diagram is conformal, the reader is invited
to view the general relativistically ray-traced visualizations at [1]. The visualizations
confirm that an infaller sees distinct outgoing and ingoing horizons, consistent with
the Penrose diagram.

The question of what things look like when you fall inside the horizon of a black
hole is of some intrinsic interest. Certainly public audiences are fascinated by it.

But there are deeper reasons, having to do with quantum gravity and the
breakdown of locality across horizons, for being curious about what things look
like inside a black hole. Locality is the standard flat-space quantum-field-theory
proposition that operators at spacelike-separated points commute. By the principle
of equivalence, one might expect that locality would hold in spacetimes where the
curvature is significantly below Planck, which includes the inside of a black hole except
near its singularity. However, if locality holds, then unitarity must break down in
black hole evaporation, because points inside the black hole are spacelike-separated
from points outside the black hole after it has evaporated, so information in points
inside the black hole is lost to the outside [2]. Unitarity is widely considered to be a
more fundamental principle than locality. If so, then it must be that locality breaks
down across the horizon of a black hole. The interior of a black hole must share states
with the exterior, an idea called “black hole complementarity” [3].

Black hole complementarity has led to a more general concept known as “observer
complementarity” [4, 5]. Observer complementarity posits that locality breaks down
between any two spacelike-separated points that lie outside the causal diamond of any
observer. That is, locality breaks down between any two points whose future lightcones
do not intersect. Figure 2 illustrates the idea of observer complementarity. It shows the
causal diamond of an observer who hits the central singularity of a Schwarzschild black
hole. Observer complementarity implies that locality applies within the observer’s
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Figure 3. (Color online) The number of regions with non-intersecting future
lightcones proliferates near the singularity of a Schwarzschild black hole.

causal diamond, but breaks down outside it, so that points within the causal diamond
share states with those outside. In its strongest form, observer complementarity asserts
that the causal diamond of the observer contains a complete set of states.

Recently, we [6] showed that classical processes of dissipation can create many
orders of magnitude more than the Bekenstein-Hawking [7, 8] entropy inside the
horizon of a black hole. This would lead to a gross violation of the second law
of thermodynamics if the black hole subsequently evaporated radiating only the
Bekenstein-Hawking entropy. The calculation in [6] made the classical assumption
that entropy is additive over spacelike slices inside the black hole, which is valid
as long as locality holds inside the black hole. The second law of thermodynamics
can be rescued provided that there is a wholesale breakdown of locality inside the
black hole. Observer complementarity predicts precisely such a wholesale breakdown,
since, as illustrated in Figure 3, the number of regions with non-intersecting future
lightcones proliferates near the singularity of a black hole. Detailed calculations [9]
confirm that, if observer complementarity holds, then the calculation of [6] does not
lead to a violation of the second law. This is cogent evidence in favor of observer
complementarity.

The question of exactly how locality breaks down remains a subject of debate
[10, 11, 12, 13]. The present paper does not consider the question per se. Rather,
it addresses what things look like classically in the regime where locality is on
the threshold of breaking down. Specifically, as illustrated in Figure 2, points in
opposite directions along the past lightcone of an observer at the instant of hitting
the singularity lie at “the edge of locality,” the future lightcones of such points just
barely intersecting as they hit the singularity.

Regardless of motivation, the purpose of the present paper is to describe
what things look like from the perspective of an observer inside the horizon of a
Schwarzschild black hole, especially as they approach the central singularity, where,
from the observer’s point of view, the wavefunction of the universe builds to its
ultimate climax.

An important technical issue addressed in this paper is the problem of assigning
a perceived location to an emitting object. An observer in a highly curved spacetime
has no difficulty in specifying precisely the perceived angular position of an object,
but has a harder time determining its distance. In this paper we argue that the
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Figure 4. Coordinate system. The emitter and observer are separated by angle
θ in a polar coordinate system {r, θ, φ} about the black hole. A light ray from
emitter to observer subtends apparent angle χ from the vertical axis.

affine distance provides a definitive measure of distance along null rays in curved
spacetime. However, the affine distance is not always directly measurable, and we
therefore pose the question of whether there are direct measures of distance that
adequately approximate the affine distance. We argue that the trinocular distance
(binocular vision is inadequate) provides a viable estimate of the affine distance.

The paper is structured as follows. Section 2 discusses the affine distance. The
core of the paper is §3, which discusses the scene inside the horizon. Finally, §4
discusses perceptual surrogates for the affine distance.

2. Affine distance

The canonical measure of distance along a null ray in general relativity is the affine
distance λ, which is the proper distance along the null ray measured by an ensemble
of observers arrayed along it each of whom measures the ray to have the same photon
frequency. The arbitrary overall constant in the definition of affine distance is fixed
naturally by tying it to the reference frame of the observer. If you lived in a highly
curved spacetime, and you put out your rigid arm to touch something, then the
distance that your arm would measure would be the affine distance (see Appendix A
for clarification of this assertion).

The Schwarzschild metric is, in polar coordinates xµ ≡ {t, r, θ, φ},
ds2 = −B dt2 +B−1dr2 + r2(dθ2 + sin2θ dφ2) , (1)

where B ≡ 1 − 2M/r with M the mass of the black hole. In the Schwarzschild
metric, the coordinate 4-velocity kµ ≡ dxµ/dλ along a null geodesic satisfies three
conservation laws, associated with energy, mass, and angular momentum J ,

kt = 1/B , kr = ±
√

1 −BJ2/r2 , k⊥ = J/r2 . (2)

Here the photon energy kt has been normalized to one as perceived by observers at
rest at infinity. Integrating dr/dλ = kr yields the affine distance λ normalized to
observers at rest at infinity:

λ =

∫ robs

rem

dr
√

1 −BJ2/r2
. (3)
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The observed affine distance is then

λobs = Eobsλ (4)

where Eobs is the photon energy perceived by the observer relative to the photon
energy perceived by observers at rest at infinity. If the observer has specific energy E
and angular momentum L, then their coordinate 4-veolocity uµ ≡ dxµ/dτ is

ut =
E

B
, ur = ±

√

E2 −B(1 + L2/r2) , u⊥ = L/r2 . (5)

The observed photon energy Eobs ≡ −uµk
µ is then

Eobs =
E ∓

√

(1 −BJ2/r2) [E2 −B(1 + L2/r2)]

B
− L.J

r2
. (6)

The view from inside a black hole is most symmetrical in the frame of an observer
radially free-falling on the zero-energy geodesic, E = 0, L = 0, at the border between
ingoing (E > 0) and outgoing (E < 0). An observer on the zero-energy radial geodesic
sees a photon of angular momentum J subtend an angle χ away from the vertical axis
(see Figure 4) given by

| tanχ| =
√
−BJ/r . (7)

The zero-energy radial observer sees the observed photon energy Eobs, equation (6),
relative to its energy at rest at infinity to be

Eobs =

√

1 −BJ2/r2

−B =
| secχ|√

−B
. (8)

3. The scene inside the horizon

The scene that any observer sees is, of course, the three-dimensional hypersurface that
constitutes the past lightcone of the observer.

Figure 5 shows (from top to bottom) six successive views of the location of the
ingoing and outgoing horizons of a Schwarzschild black hole, as perceived by an
observer who free-falls radially from zero velocity at infinity (E = 1, L = 0). In
these views, the distance from any point on the scene to the observer has been set
equal to the affine distance.

In the top panel of Figure 5, the observer is outside the horizon, at a radius of
3 geometric units (which also happens to be the radius of the photon sphere). Being
outside the horizon, the observer sees only the outgoing horizon, not the ingoing
horizon. The outgoing horizon appears to recede into the infinite distance (extending
beyond the view shown in Figure 5), as photons emanating from the horizon are able
to orbit the black hole an infinite number of times near the photon sphere before
peeling off into the observer’s eye.

In the second panel from top of Figure 5, the observer is just inside the horizon,
at a radius of 1.999 geometric units. At the instant that the infaller passes through
the ingoing horizon, the ingoing horizon appears not as a surface, but rather as a line
(which appears in projection as a point) that extends from the position of the observer
down to the outgoing horizon.

In the third and fourth panels from top of Figure 5, the observer is inside the
horizon, at radii of respectively 1 and 0.5 geometric units. The ingoing horizon appears
to form a bubble, the “Schwarzschild bubble,” over the observer’s head. The ingoing
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Figure 5. (Color online) Six successive views of the location of the ingoing
(blue) and outgoing (red) horizons of a Schwarzschild black hole as perceived by
an observer who is free-falling radially from zero velocity at infinity. From top to
bottom, the observer is at radii of 3, 1.999, 1, 0.5, 0.1, and 0.01 geometric units.
The small circle, diameter 1 geometric unit, at the center of each frame marks
the position of the observer. Tick marks on the horizons are spaced every 30◦.

(blue) and outgoing (red) horizons join at a circle (projecting to a pair of points in
Figure 5), where the photon angular momentum J is infinite. As the observer falls
inward, the Schwarzschild bubble expands horizontally.

In the limit as the observer approaches the singularity, the edge of the
Schwarzschild bubble extends to an angular radius of π around the black hole, so that
the bubble finally encompasses the full surface of each of the ingoing and outgoing
horizons.

Figure 6 shows additional detail for the observer at a radius of 1 geometric unit
(third frame from top in Figure 5). The Figure shows the perceived location of emitting
surfaces at radii of 3.5, 3, 2.5, and 1.5 geometric units. Inside the horizon, an observer
can see points only at radii larger than their own: points at smaller radii are invisible.
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Figure 6. (Color online) Additional detail for the observer at 1 geometric unit,
in the third-from-top frame of Figure 5. The various lines show the perceived
location of emitting surfaces at, from top to bottom, radii of 3.5, 3 (photon
sphere), 2.5, 2 (horizon), and 1.5 geometric units. The lines are blue where the
emitted photon is initially ingoing, and red where the emitted photon is initially
outgoing.

The observer sees the surface at 1.5 geometric units to surround them. Ingoing photons
(blue) appear above the observer (away from the black hole), while outgoing photons
(red) appear ahead of the observer (towards the black hole).

As the observer approaches the singularity, the horizons appear to flatten out,
and appear to approach each other ever more closely, as illustrated in the bottom
two panels of Figure 5. The appearance is caused by the growing tidal field near the
singularity, which aberrates the view so as to shift the apparent positions of objects
away from vertical towards horizontal.

Figure 7 shows essentially the same set of views as Figure 5, but now from the
perspective of an observer free-falling radially on the zero-energy geodesic (E = 0,
L = 0). The scenes in Figures 7 and 5 are related by a radial Lorentz boost. The
advantage of the zero-energy frame is that it reveals the symmetry between ingoing
and outgoing geodesics. The symmetry is evident in Figure 7 as a reflection symmetry,
about a horizontal plane passing through the observer, between the perceived locations
of ingoing (blue) and outgoing (red) surfaces.

The view as the observer approaches the singularity is of particular interest
because, in the instant that the observer hits the singularity, null rays in
opposite directions along the observer’s past lightcone are, according to observer
complementarity, at the edge of locality, their future lightcones being at the brink
of ceasing to intersect, Figure 2. Figure 8 shows a zoom-in of the view seen by
an observer close to the singularity, at a radius of 10−8 geometric units. The tidal
force, which tends to infinity at the singularity, aberrates the view so that it appears
extremely flattened: emitting surfaces of constant radius appear to be flat planes,
which crowd close to the observer. In Figure 8, the observer is on the zero-energy radial
geodesic, but because the tidal force is so overwhelming, the view is the essentially
same regardless of the radial motion of the observer (the view looks essentially the
same provided that the observer’s geodesic energy satisfies |E| ≪

√
−B, which is true

as the observer approaches the singularity, B → −∞, as long as the observer is not
accelerating like crazy, so that E is not diverging). The view does depend on the
observer’s angular momentum: if the observer has some angular momentum, then the
view is aberrated (concentrated) in the direction of the observer’s angular motion.
However, the view appears flattened into a plane regardless of the observer’s angular
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Figure 7. (Color online) Similar to Figure 5, but as perceived by an observer
who is infalling on the zero-energy radial geodesic, which makes manifest the
symmetry between ingoing and outgoing. The zero-energy geodesic exists only
inside the horizon, so only images where the observer is inside the horizon can
be shown. From top to bottom, the observer is at radii of 1.999, 1, 0.1, 0.5, and
0.01 geometric units, as in all but the top frame of Figure 5. The second-from-top
frame, where the observer is at 1 geometric unit, shows additional detail similar
to Figure 6; the various lines show the perceived location of emitting surfaces
at, from top to bottom, radii of 3.5, 3 (photon sphere), 2.5, 2 (horizon), and 1.5
geometric units. The lines are blue where the emitted photon is initially ingoing,
and red where the emitted photon is initially outgoing.

motion.
As the observer approaches the singularity, the apparent (affine) vertical distance

λobs between the observer at radius robs and an emitting surface at radius rem tends
to (the following is the affine distance λobs in geometric units in the zero-energy radial
frame, evaluated for zero angular momentum photons, J = 0)

λobs → rem
√

robs/2 as robs → 0 . (9)

The limit (9) says that as the observer approaches the singularity, robs → 0, the
apparent distance to emitting surfaces goes to zero as the square root of robs.

The arrowed lines converging on the observer in Figure 8 represent a sample
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Figure 8. (Color online) Zoom-in of the view perceived by an observer close to
the singularity, at a radius of 10−8 geometric units. The central circle, diameter
10−4 geometric units, marks the position of the observer, who is infalling on
the zero-energy radial geodesic, as in Figure 7. The horizontal lines represent
perceived locations of surfaces at, starting farthest from the observer, radii of 4,
3 (photon sphere), 2.5, 2 (horizon), and 1 geometric units. The lines are blue
where the emitted photon is ingoing, red where the emitted photon is outgoing.
The dashed lines are a reminder that the lines extend horizontally way beyond
shown here. The arrowed lines converging on the observer represents a sample pair
of oppositely directed ingoing and outgoing light rays along the observer’s past
lightcone. Any pair of points on the oppositely directed light rays (one ingoing,
one outgoing) are near the edge of locality; that is, their future lightcones intersect
just barely before the singularity.

pair of oppositely directed ingoing and outgoing light rays along the observer’s past
lightcone. Any pair of points on the oppositely directed light rays (one on the ingoing
ray, the other on the outgoing ray) are at the edge of locality, meaning that their
future lightcones intersect just barely before the singularity. Along the past lightcone
of an observer hitting the singularity, only points on oppositely directed ingoing and
outgoing light rays are at the edge of locality. Points on the lightcone that lie in
other than opposing ingoing and outgoing directions are connected by “shortcut” null
geodesics, so that their future lightcones intersect before the singularity.

Figure 9 shows the blueshift, the ratio of observed to emitted photon energy,
observed by an observer close to the singularity, at a radius of 10−8 geometric units,
the same as in Figure 8. The blueshift is shown for the same five emitting surfaces
shown in Figure 8, at radii of 4, 3, 2.5, 2, and 1 geometric units, and in addition
for emitting surfaces at smaller and larger radii, 0.01 and 100 geometric units. The
blueshift depends on the motion both of the observer and the emitter. In Figure 9,
the observer is taken to be on the zero-energy radial geodesic (E = 0, L = 0), while
the emitters are taken to be radially free-falling from zero velocity at infinity (E = 1,
L = 0), a natural choice. While the blueshift depends on the motion of the observer
and emitters, the trend shown by Figure 9 is generic. The Figure shows that the
blueshift of a point at a given radius rem is approximately proportional to the affine
distance, but that points at larger emitting radius are more redshifted.

Figure 9 shows that as the observer approaches the singularity, the view above
and below the observer (small affine distances) becomes highly redshifted, while the
view in the horizontal direction (large affine distances) becomes highly blueshifted.
The effect is caused by the enormous tidal force near the singularity. Looking up, the
observer feels an upward gravitational force pulling their head off. Looking down, the
observer feels a downward gravitational force pulling their feet off. The up and down
gravitational forces away from the observer cause the view above and below to appear
gravitationally redshifted. The same tidal force that pulls the observer apart vertically
also compresses them horizontally. The horizontal tidal compression concentrates and
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Figure 9. (Color online) Blueshift (= ratio of observed to emitted energy)
observed by an observer close to the singularity, at a radius of 10−8 geometric
units, the same as in Figure 8. The blueshift is a plotted as a function of the
affine distance between the observer and the emitting point. The lines represent
emitting surfaces at, from top to bottom, radii of 0.01, 1, 2 (horizon), 2.5, 3
(photon sphere), 4, and 100 geometric units. The lines are blue where the emitted
photon is ingoing, red where the emitted photon is outgoing.

blueshifts the view in the horizontal direction.

4. Perceptual distances

The affine distance may be the “canonical” measure of distance along a null geodesic
in general relativity, but this distance is not directly measurable to an observer nearing
the singularity, no more than an astronomer can measure the distance to a star by
reaching out and touching it.

4.1. Binocular distance

A measure of distance used successfully by apes leaping through trees is the binocular
distance, also known to astronomers as parallax distance. The binocular distance
is the radius of curvature of the wavefront of light rays emitted by the emitter and
observed by the observer.

Question for the reader: if you look at this page through a magnifying glass, does
your binocular vision perceive the text to be closer or farther away? Answer at the
end of the subsection.

Consider two eyes a small distance δlν apart. The covariant difference δkµ in the
photon wavevectors perceived by the two eyes is

δkµ = δlνkµ
;ν (10)

where the colon ; represents covariant differentiation. The eye separation δlν is
confined to lie on the 3-dimensional future lightcone of the emitter, and the geodesic



The edge of locality: visualizing a black hole from the inside 12

.0

.5

1.0

R
ec

ip
ro

ca
l

bi
no

cu
la

r
di

st
an

ce

.0

.5

1.0

0 30 60 90 120 150 180
Viewing angle χ (degrees)

R
ec

ip
ro

ca
l

an
gu

la
r

di
am

et
er

di
st

an
ce

Figure 10. (Color online) Perceived reciprocal binocular (upper panel) and
angular diameter (lower panel) distances to the ingoing (blue) and outgoing (red)
horizons of a Schwarzschild black hole perceived by an observer inside the black
hole, as a function of the viewing angle χ relative to the vertical axis, with 0◦

being up to the sky above, and 180◦ down to the black hole below. The observer is
at a radius of 1 geometric unit, and is infalling on the zero-energy radial geodesic,
the same as illustrated in the top image of Figure 7. Dashed and dotted lines show
the reciprocal distances respectively in the polar and azimuthal directions, while
thick solid lines show the average of the polar and azimuthal reciprocal distances.
The averaged reciprocal distances provide a good estimate of the affine distance
(thin solid black lines) for viewing angles not too far off axis.

equation implies that δkµ vanishes for δlν parallel to the wavevector kν . Thus without
loss of generality the eyes can be taken to lie in the 2-dimensional subsurface of the
emitter lightcone that is orthogonal to the wavevector (of course, brain magic allows
binocular vision to work in real animals regardless of how the eyes are oriented). More
explicitly, the covariant difference in photon wavevectors between the two eyes is

δkµ = δlν
(

∂kµ

∂xν
+ Γµ

κνk
κ

)

(11)

in which the first term, δlν∂kµ/∂xν , represents the change in the photon wavevector
kµ between the two eyes, while the second term, δlνΓµ

κνk
κ, represents the effect of

parallel-transporting the photon wavevector from one eye to the other. The second
term corrects for the difference in spacetime frames of the two eyes that results from
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the arbitrariness of coordinates in general relativity. It is only the covariant difference
in photon wavevectors that is physically measurable. Evaluating the first term on the
right hand side of equation (11) involves ray-tracing from emitter to observer, while
the second term on the right depends only on quantities local to the observer.

In geometric optics, the future lightcone of the emitter is a surface of constant
phase ψ, the wavefront. The photon wavevector kµ is given by the gradient of the
phase, kµ = ψ;µ = ∂ψ/∂xµ [14]. The null condition kµkµ = 0 implies that the photon
wavevector kµ is orthogonal to the gradient kµ of the phase, and therefore lies in
the lightcone, the surface of constant phase. The covariant derivative of the photon
wavevector is the curvature of the phase, a symmetric matrix in the absence of torsion
(as general relativity assumes):

kµ;ν = ψ;µν . (12)

In the locally inertial frame of the observer, and on the lightcone, the non-vanishing
components of the curvature matrix constitute a 2×2 symmetric matrix in the spatial
directions orthogonal to the wavevector. This is the curvature of the two-dimensional
wavefront, as perceived by the observer.

In flat spacetime (Minkowski space), the wavefront from a point emitter is
spatially spherical, and the reciprocal of the curvature of the wavefront equals the
affine distance regardless of how the eyes are oriented about the line of sight. The
fact the binocular distance agrees with the affine distance in flat space accounts for
its successful use by apes.

In curved spacetime, the curvature matrix has two different eigenvalues, so the
wavefront is ellipsoidal, yielding two different measures of binocular distance. The
conflicting visual cues would presumably disorient an ape, just as conflicting visual
and motion cues disorient people inside immersive environments such as airplanes.
Feeling disoriented may be the least of the afflictions facing an observer nearing the
singularity of a black hole.

The top panel of Figure 10 shows the reciprocal of the polar and azimuthal
binocular distances to the ingoing and outgoing horizons of a Schwarzschild black
hole, as seen by the observer whose view is shown in the top panel of Figure 7. The
observer is inside the horizon at a radius of 1 geometric unit, and is radially infalling
on the zero-energy geodesic. On-axis (0◦ and 180◦), the binocular distances agree with
the affine distance, but off-axis the polar and azimuthal binocular distances disagree,
a symptom of the fact that the wavefront is ellipsoidal rather than spherical.

Answer to the question of whether binocular vision perceives text seen through a
magnifying glass to be closer or farther away: farther away. Try it.

4.2. Trinocular distance

One must assume that acute inhabitants, Figure 11, of highly curved spacetime would
evolve three eyes, trinocular vision, to process the ellipsoidal wavefront into a best
distance, one that allows them to leap from tree to tree with the least incidence of
death.

The top panel of Figure 10 shows that the mean of the reciprocal polar and
azimuthal binocular distances agrees well with the affine distance even well off-axis
where the wavefront is quite non-spherical. This suggests that a good strategy for the
brains of three-eyed apes would be to infer a distance from the mean of the reciprocal
binocular distances, that is, from the trace of the wavefront curvature matrix.
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Figure 11. A three-eyed inhabitant of a highly curved spacetime.

The agreement of the mean of the reciprocal binocular distances with the affine
distance can be regarded as a consequence of the Raychaudhuri equation, which shows
that in empty inter-tree space (zero energy-momentum tensor), the expansion of a
bundle of light rays depends only quadratically on the shear. Thus the expansion is
unaffected to linear order by the shear. In other words, the expansion is more or less
what it would be in the absence of shear, provided that the ellipticity of the ray bundle
is less than unity.

The trinocular distance fails as an estimate of affine distance when the ellipticity
of the ray bundle exceeds unity. The wise ape would learn not to leap at trees for
which the two binocular distances are too discrepant. This should not pose much of
a problem, since such trees would tend to be farther away, more likely to be out of
leap-range.

As a brief reminder of where the Raychaudhuri and related equations come from,
a bundle of light rays may be characterized by the four Sachs scalars, the expansion,
vorticity, and complex shear (see e.g. §9 of [15]). The Sachs scalars are equivalent to
the 2 × 2 matrix of tetrad-frame connection coefficents orthogonal to the wavevector
evaluated in a sequence of locally inertial frames parallel-transported along the null
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ray. The evolution of the Sachs scalars is governed by the usual equations relating
the tetrad-frame connection coefficients to the Riemann tensor. In geometric optics,
where the wavevector is the gradient of a scalar, the vorticity vanishes [14]. If the tidal
stress (spin-2 component of the Weyl tensor) along the bundle is non-vanishing, then
shear accumulates along the bundle, causing the wavefront to become ellipsoidal. The
equation for the expansion, the Raychaudhuri equation, depends quadratically on the
shear.

4.3. Angular diameter distance

Another measure of distance available to the observer is one known to astronomers as
the angular diameter distance. This distance follows from the perceived angular size
of an object of known proper size.

Whereas the binocular or trinocular distance provides an unambiguous perceptual
measure of distance, the angular diameter distance does not, because it requires
knowing the actual proper size of the object being observed, which the observer may
not know.

The observer can deduce an absolute distance from the fractional difference in
angular diameter distances perceived by two eyes separated along the line-of-sight.
However, this distance is simply the binocular distance, and so does not provide an
additional measure of distance.

The angular diameter distance in any direction is δl/δα, where δl ≡
√
δlνδlν is the

proper spatial separation of points at the emitter transverse to the line-of-sight, and
δα is the apparent angle between the points subtended at the observer. The angular
diameter distance can be calculated by integrating the equation of geodesic deviation
along the null ray,

D2δlν

Dλ2
= Rκλµ

νkκkµδlλ , (13)

subject to the initial conditions that the spatial separation δlν lies in the light cone,
is orthogonal to the wavevector, δlνkν = 0, and is initially zero but with non-
zero infinitesimal derivative Dδlν/Dλ. The equation of geodesic deviation (13) is
a linear equation for the evolution of deviations δlν in the two-dimensional plane
transverse to the wavevector. The transformation matrix Rκλµ

νkκkµ is symmetric
in λν, and the solution therefore has two orthogonal eigenvectors. There are two
corresponding angular diameter distances in orthogonal directions. Rather than
integrate equation (13) directly, we prefer to evaluate δlν by ray-tracing along the
null ray,

δlν = δ

∫

kνdλ , (14)

subject to the constraint that the observed affine distance from observer to emitter is
constant, δ

(

Eobs

∫

dλ
)

= 0:

δlν =

∫

δ

(

kν

Eobs

)

Eobs dλ

=

∫

δkν dλ− δ lnEobs

∫

kν dλ . (15)

The lower panel of Figure 10 shows the reciprocal of the polar and azimuthal
angular diameter distances to the ingoing and outgoing horizons of the Schwarzschild
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black hole as seen by the observer whose view is illustrated at the top of Figure 7.
Like the two binocular distances, the two angular diameter distances differ, but the
average of the inverse angular diameter distances provides a good estimate of the affine
distance, at least as long as the two angular diameter distances are not too discrepant.

5. Summary

The principal purpose of this paper has been to describe what things look like to an
observer who falls inside the horizon of a Schwarzchild black hole. Figure 5 shows
a sequence of views of the apparent location of the ingoing and outgoing horizons of
the black hole from the perspective of an observer who free-falls radially from zero
velocity at infinity. Figure 7 shows essentially the same thing from the perspective of
an observer who free-falls radially on the zero-energy geodesic, where the symmetry
between ingoing and outgoing light rays is manifest.

The reader interested in a less abstract portrayal is invited to view the general
relativistically ray-traced visualizations at [1].

The scene in the limit as the observer nears the singularity is of particular
interest because, according to observer complementarity, oppositely directed ingoing
and outgoing null rays on the past lightcone of such an observer are at “the edge of
locality,” the future lightcones of such rays being on the verge of intersecting. Figure 8
shows the view from the perspective of an observer close to the singularity. Figure 9
shows how the various parts of the view appear redshifted or blueshifted. The diverging
tidal field near the singularity causes the view to appear compressed into a horizontal
plane. The view is blueshifted in the horizontal direction, but redshifted in all other
directions.

An important technical part of this paper is the problem of assigning a perceived
position to any emitter. An observer in a highly curved spacetime easily specifies
precisely the perceived angular position of an emitting object, but, like an astronomer
looking at a star, has a harder time specifying its distance. We argue, §2, that the
affine distance provides a definitive measure of distance along a null ray in curved
spacetime. However, the affine distance is not necessarily directly measurable, and
we therefore discuss, §4, perceptual surrogates for the affine distance. Binocular
distance (parallax distance) fails in curved spacetime because wavefronts becomes
ellipsoidal, yielding two conflicting measures of binocular distance. We suggest that
acute inhabitants of highly curved spacetime would evolve three eyes, Figure 11, to
process the ellipsoidal wavefront into a best estimate, the trinocular distance. It follows
from the Raychaudhuri equation that the trace of the wavefront curvature matrix
yields a trinocular distance that is a good estimate of the affine distance provided
that the ellipticity of the wavefront is not much greater than one.
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Appendix A. Affine distance and rigid arms

In §2 it was asserted that if you lived in a highly curved spacetime, and you put out
your rigid arm to touch something, then the distance that your arm would measure
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would be the affine distance.
A rigid arm can be defined as one in which the proper length along any small

interval of it is constant, and equal to its proper length at rest. If an arm accelerates,
then the only way that the arm can remain perfectly rigid is for the acceleration at
any two points a small interval apart on it to occur simultaneously in their mutual rest
frame, and to be Rindler-like, meaning that the acceleration at any point is inversely
proportional to the proper distance to the point along the arm, starting from some
zero point or other. This kind of acceleration is acausal (simultaneous over spacelike-
separated points). Thus in relativity, a body cannot be intrinsically rigid, because to
do so would be to violate causality. Nevertheless, it is possible to consider an arm
that is kept rigid through superb anticipation and coordination by the brain.

Suppose that you did wield an arm rigidly. Then the distance it measures would
be the affine distance. This follows from the facts that: (a) because general relativity
is a metric theory, the proper distance along an interval measured in an accelerating
frame is the same as the proper distance along the interval measured in a free-fall
frame with the same instantaneous velocity; and (b) in a free-fall frame, two points a
small interval apart are at rest relative to each other if and only if light rays bounced
between the points show no Doppler shift.
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